Numerical modelling and diagnostic techniques of hydraulic fractures based on their inlet behaviour
DOI:
https://doi.org/10.4067/S0718-28132015000200005Keywords:
Hydraulic fracturing, Numerical modelling, Diagnostic technique, Mine pre-conditioningAbstract
In the current conditions of mines exploited by caving methods, pre-conditioning by hydraulic fracturing has proven to have positive impacts such as the decrease in the block’s size related to the primary fragmentation. An essential part of the pre-conditioning design is the estimation of the hydraulic fracture’s length. On the other hand, the energy dissipated by the viscous flow inside the fracture modifies the propagation characteristics of these fractures, making difficult the use of standard methods of fracture mechanics in numerical modelling. For this reason, for plainstrain and axisymmetric cases we propose a numerical resolution strategy, which can be used for any set of hydraulic fracturing parameters. These criteria are based on the pressure and opening values at the inlet, and additionally on their length (or radius). Furthermore, this last characteristic, allow us to modify the propagation criteria in order to generate diagnostic tools for the estimation of fractures dimensions in the field.
References
Abou-Sayed, A.S. (1994). Safe injections pressures for disposing of liquid wastes: a case study for deep well injection. Proceedings of the Second SPE/ISRM Rock Mechanics in Petroleum Engineering. Balkema, 769-776.
Adachi, J. (2001). Fluid driven fracture in permeable rock. PhD thesis, University of Minnesota.
Adachi, J., Siebrits, E., Peirce, A. and Desroches, J. (2007). Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences 44: 739-757.
Akulich, A.V. and Zvyagin, A.V. (2008). Numerical simulation of hydraulic fracture crack propagation. Moscow University Mechanics Bulletin 63(1), 6-12.
Araneda, O. and Sougarret, A. (2007). Lessons learned in cave mining: El Teniente 1997-2007. Proceedings of the First International Symposium on Block and Sub-level Caving. Cape Town.
Bunger, A., Zhang, X. and Jeffrey, R. (2012). Parameters affecting the interaction among closely spaced hydraulic fractures. SPE Journal 17(1), 292-306.
Crouch, S.L. and Starfield, A.M. (1983). Boundary element methods in solid mechanics. London, George Allen & Unwin.
Desroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J.R.A., Thiercelin, M. and Cheng, A. (1994). The crack tip region in hydraulic fracturing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 447(1929), 39-48.
Desroches, J. and Thiercelin, M. (1993). Modelling the propagation and closure of micro-hydraulic fractures. International Journal of Rock Mechanics Mining Sciences and Geomechanics Abstracts 30(7), 1231-1234.
Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics 4(1), 35-45.
Garagash, D. and Detournay, E. (2007). Plane-strain propagation of a fluid-driven fracture: small toughness solution. Journal of Applied Mechanics 72(6), 916-928.
Garagash, D. (2006). Plane-strain propagation of a fluid-driven fracture during injection and shut-in: asymptotics of large toughness. Engineering Fracture Mechanics 73(4), 456-481.
Gordeliy, E. and Detournay, E. (2011). Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space. International Journal of Solids and Structures 48(19): 2614-2629.
Haimson, B.C. and Cornet, F.H. (2003). ISRM suggested methods for rock stress estimation – Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). International Journal of Rock Mechanics & Mining Sciences 40(7-8), 1011-1020.
Jeffrey, R.G., Settari, A., Mills, K.W., Zhang, X. and Detournay, E. (2001). Hydraulic fracturing to induce caving: fracture model development and comparison to field data. Proceedings of the 38th US Rock Mechanics Symposium. Washington DC, USA, 251-259.
Moss, A. (2011). Block caving. Presentation at the 20th BMO Capital Markets Global Metals & Mining Conference. Miami, USA.
Moss, A.V and Maron, I.A. (1987). Computational Mathematics: worked examples and problems with elements of theory. 4th ed. Moscow: Mir Publishers.
Savistski, A. and Detournay, E. (2002). Propagation of a pennyshaped fluid driven fracture in an impermeable rock: asymptotic solutions. International Journal of Solids and Structures 39(26), 6311-6337.
Sneddon, I.N. (1951). Fourier Transforms. New York, McGraw-Hill.
Sneddon, I.N. and Lowengrub, M. (1969). Crack problems in the classical theory of elasticity. New York, John Wiley & Sons.
Spence, D.A. and Turcotte, D.L. (1985). Magma-driven propagation of cracks. Journal of Geophysical Research: Solid Earth 90(B1), 575-580.
Valkó, P. and Economides, M.J. (1995). Hydraulic fracture mechanics. John Wiley & Sons, Chichester, UK.
van As, A., Jeffrey, R.G., Chacón, E. and Barrera, V. (2004). Preconditioning by hydraulic fracturing for block caving in a moderately stressed naturally fractured orebody. Proceedings of MassMin 2004. Santiago, Chile, 535-541.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Universidad Católica de la Santísima Concepción

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


