Dynamic analysis of a self-supported tower subjected to wind and seismic loadings
DOI:
https://doi.org/10.4067/s0718-28132018000100078Keywords:
Dynamic analysis, Wind, Earthquake, Direct integration, Modal superpositionAbstract
Self-supporting towers are structures that require special attention under the dynamic actions generated by wind loads and seismic loads. Three approaches can be identified for the dynamic analysis of these structures: equivalent static methods, methods in the frequency domain and methods in the time domain. The development of computation in recent decades has made easier the applications of complex dynamic analysis methods, such as the time domain method, that can be solved by means of modal superposition or direct integration techniques. Given the coexistence in the literature of both techniques in the analysis of the self-supported towers, the present work aims to compare the response in terms of displacements and support reactions, of a self-supported tower under the action of dynamic loads of wind and earthquake, using modal superposition and direct integration. The results of the application of both techniques showed differences of less than 2% in the values of support reactions and the displacements of the tower. The procedure based on modal superposition is more efficient since it consumes less time and computational memory.
References
Aktas, G. and Karasin, A. (2014). Experimental confirmation for the validity of Ritz method in structural dynamic analysis. Journal of Theoretical and Applied Mechanics 52(4): 981-993.
Amiri, G.G., Barkhordari, M.A., Massah, S.R. and Vafaei, M.R. (2007a). Earthquake amplification factors for self-supporting 4-legged telecommunication towers. World Applied Sciences Journal 2(6), 635-643.
Amiri, G.G., Massah, S.R. and Boostan, A. (2007b). Seismic response of 4-legged self-supporting telecommunication towers. International Journal of Engineering Transactions B: Applications 20(2): 107-126.
An, Y., Quan, Y. and Gu, M. (2012). Field measurement of wind characteristics of Typhoon Muifa on the Shanghai World Financial Center. International Journal of Distributed Sensor Networks 893739.
AS/NZS 1170.2 (2011). Structural design actions. Part 2: Wind actions. Australian/New Zeland Standard.
Augusti, G., Bartoli, G., Borri, C., Gusella, V. and Spinelli, P. (1992). Wind load and response of broadcasting antennas: Three years of research work in cooperation with RAI. Journal of Wind Engineering and Industrial Aerodynamics 43(1), 2077-2088.
Bentes, J., Menezes, R.C. and Riera, J.D. (2014). Dynamic response of guyed towers in transmission lines submitted to broken conductors. 9th International Conference on Structural Dynamics EURODYN 2014, Cunha et al. eds., Porto, Portugal.
Cao, S. (2013). Strong winds and their characteristics. In Advanced Structural Wind Engineering. Tamura and Kareem eds., Springer, 1-28.
Chen, J. and Li, L. (2012). Investigation on dynamic response of steel tower structure under time-history wind load. Applied Mechanics and Materials 166-169: 699-707.
Chiu, A.N.L. and Taoka, G.T. (1973). Tower response to actual and simulated wind forces. Journal of the Structural Division 99(9): 1911-1929.
Chopra, A.K. (2014). Dinámica de Estructuras. Prentice Hall, México.
Clough, R.W. and Penzien, J. (1993). Dynamics of Structures. 2nd ed., McGraw-Hill, New York.
Fu, J.Y., Wu, J.R., Xu, A., Li, Q.S. and Xiao, Y.Q. (2012). Fullscale measurements of wind effects on Guangzhou West Tower. Engineering Structures 35, 120-139.
Gani, F. and Légeron, F. ( 2010). Dynamic response of transmission lines guyed towers under wind loading. Canadian Journal of Civil Engineering 37(3): 450-465.
Khedr, M. and McClure, G. (1999). Earthquake amplification factors for self-supporting telecommunication towers. Canadian Journal of Civil Engineering 26(2), 208–215.
Martín, P. (2014). Estudio analítico-experimental de torre autosoportada con presencia de antenas bajo la acción del viento. Tesis de Doctorado, Instituto Superior Politécnico José Antonio Echeverría.
Martín, P. y Elena, V.B. (2012). Análisis sísmico de modelos cubanos de torres autosoportadas de telecomunicaciones. Revista Cubana de Ingeniería 3(2): 25-34.
Matlab (2013). Matlab2013a. The MathWorks Inc. Natick, Massachusetts, USA.
NC-285 (2003). Carga de viento. Método de cálculo. Oficina Nacional de Normalización, Cuba.
PEER (2011). PEER strong motion database. Pacific Earthquake Engineering Research Center, Berkeley, USA.
SAP2000 (2011). Computer program v14. Computers and Structures Inc., Berkeley, USA.
Serrano, O.J.P., Mora, E.B. y Salazar, A.R. (2014). Simulación de la componente longitudinal del viento por representación espectral y el análisis dinámico en edificios de cortante. XIX Congreso Nacional de Ingeniería Estructural, Puerto Vallarta, Jalisco, México.
Shinozuka, M. and Jan C.M. (1972). Digital simulation of random processes and its applications. Journal of Sound and Vibration 25(1): 111-128.
Solari, G. and Piccardo, G. (2001). Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics 16(1): 73-86.
Sparling, B.F. (1995). The dynamic behaviour of guys and guyed masts in turbulent winds. PhD thesis, The University of Western Ontario, Canada.
Taillon, J.Y., Légeron, F. and Prud’homme, S. (2012). Variation of damping and stiffness of lattice towers with load level. Journal of Constructional Steel Research 71, 111-118.
Wilson, E.L., Farhoomand, I. and Bathe, K.J. (1972). Nonlinear dynamic analysis of complex structures. Earthquake Engineering & Structural Dynamics 1(3), 241-252.
Wilson, E.L. (2002). Three-dimensional static and dynamic analysis of structures. 3rd ed., Computer and Structures Inc., Berkeley, USA.
Wilson, E.L., Yuan, M.W. and Dickens, J.M. (1982). Dynamic analysis by direct superposition of Ritz vectors. Earthquake Engineering & Structural Dynamics 10(6), 813-821.
Zhang, Z., Li, H., Li, G., Wang, W. and Tian, L. (2013). The numerical analysis of transmission tower-line system windinduced collapsed performance. Mathematical Problems in Engineering 413275.
Zhou, L. and Zheng, W.X. (2008). Three-dimensional analysis of thick plates by MLS-Ritz method. International Journal of Structural Stability and Dynamics 8(1): 77-101.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Universidad Católica de la Santísima Concepción

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


