Mechanical impedance evaluation of soils by variable energy dynamic penetration tests
DOI:
https://doi.org/10.21703/0718-2813.2025.37.3238Keywords:
Dynamic penetration test, DPT, Mechanical impedance, Dynamic driving energy, Cone-soil interfaceAbstract
Soil characterization by dynamic penetration testing (DPT) has been performed by establishing geotechnical parameters obtained from the application of correlations based on penetration indices, dynamic driving equations and to a lesser extent by direct measurements. This characteristic produces a decrease in the precision and variety of the geotechnical parameters that can be evaluated in the field by means of a DPT. To improve the accuracy in soil characterization, the evaluation of new geotechnical parameters based on measurements directly obtained in the penetration equipment is an alternative. The purpose of this paper is to present a methodology for the evaluation of soil mechanical impedance Zs by applying a decoupling and wave reconstruction method and to test the differentiating potential of this parameter between two different types of sands. Variable energy DPT tests were performed employing an instrumented penetrometer with strain sensors and accelerometer (PANDA3) on Hostun HN31 and Fontainebleau NE34 sand specimens reconstituted in dry state in a ko calibration chamber. The results showed that the evaluation of the mechanical impedance value in the two types of sands tested is possible by applying the decoupling method and reconstructing dynamic force and velocity signals at the cone-soil interface for each hammer impact on the dynamic penetrometer.
References
AFNOR (2000). NF P94-059 Soils : investigation and testing - Determination of minimal and maximal density of cohesionless soils. Association française de Normalisation, France.
Aoki, N. and Cintra, J.C.A. (2000). The application of energy conservation Hamilton’s principle to the determination of energy efficiency in SPT test. 6th International Conference on the Application of Stress-Wave Theory to Piles. S. Niyama and J. Bein (eds.), 457–460.
Aussedat, G. (1970). Sollicitations rapides des sols. Thèse de doctorat, Université de Grenoble, Grenoble, France.
Benahmed, N. (2001). Comportement mécanique d’un sable sous cisaillement monotone et cyclique : application aux phénomènes de liquéfaction et de mobilité y cylique. Thèse de doctorat, Ecole Nationale des Pont et Chaussees, France.
Benz, M. (2009a). Mesures dynamiques lors du battage du penetrometre panda 2. Thèse de doctorat, Université Blaise Pascal Clermont II, France.
Benz, M. (2009b). Méthodologie d’évaluation d’ouverture et fermeture des pistes en herbe d’aérodromes d’ADP à l’aide d’un pénétromètre dynamique ultraléger sur mesure. Riom, France.
Benz-Navarrete, M.A., Breul, P. and Gourvès, R. (2022). Application of wave equation theory to improve dynamic cone penetration test for shallow soil characterisation. Journal of Rock Mechanics and Geotechnical Engineering 14(1), 289–302.
Benz, M.A., Escobar, E., Gourvès, R., Haddani, Y., Breul, P. & Bacconnet, C. (2013). Mesures dynamiques lors du battage pénétromètrique – Détermination de la courbe charge-enfoncement dynamique en pointe. 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 499–502.
Casem, D.T., Fourney, W. and Chang, P. (2003). Wave separation in viscoelastic pressure bars using single- point measurements of strain and velocity. Polymer Testing 22(2), 155–164.
Escobar, E., Benz, M.A., Haddani, Y., Lamas, F., Calon, N., Aguiar, S.C.D. (2014). Reconnaissance dynamique des sites ferroviaires a l’aide du penetrometre PANDA 3®. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Beauvais, France.
Escobar Valencia, E.J., Benz Navarrete, M.A., Gourvès, R., Breul, P., Chevalier, B. (2016). In-situ determination of soil deformation modulus and the wave velocity parameters using the Panda 3®. 5th Geotechnical and Geophysical Site Characterisation, Acosta-Martínez & Kelly (eds.), Australian Geomechanics Society, vol. 1, 279–284.
Espinace, R., Villavicencio, G., Palma, J., Breul, P., Bacconnet, C., Benz, M.A., Gourvès, R. (2013). Stability of Chilean’s tailings dams with the Panda® penetrometer. Experiences of the last 10th. 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 519–522.
Gourvès, R. (1991). Le PANDA : pénétromètre dynamique léger à énergie variable pour la reconnaissance des sols. Université Blaise Pascal Clermont-Ferrand, France.
Iskander, M., Bless, S. and Omidvar, M. (2015). Rapid penetration into granular media : visualizing the fundamental physics of rapid earth penetration. Elsevier.
Jung, B., Park, Y. and Park, Y. (2006). Longitudinal acceleration wave decomposition in time domain with single point axial strain and acceleration measurements. The 8th International Conference on Motion and Vibration Control, 1-6.
Langton, D.D. (1999). The Panda lightweight penetrometer for soil investigation and monitoring material compaction. Ground Engineering 9, 33-37.
Le, van C. (2014). Étude sur modèle physique du renforcement des sols par colonnes en « Soil-Mix » : application aux platesformes ferroviaires. Thèse de doctorat, Université Paris – Est, France.
Lodygowski, T. and Rusinek, A. (eds.) (2014). Constitutive relations under impact loadings. Springer, Vienna, Austria, vol. 552.
López Retamales, S. (2022). Development of a method to evaluate the risk of liquefaction of sands from a dynamic penetrometer test. Thèse de doctorat, Ecole des Ponts ParisTech, France.
López Retamales, S., Canou, J., Dupla, J.C., Benz Navarrete, M. (2021). Development of a liquefaction risk assessment methodology using an instrumented lightweight dynamic penetrometer: calibration chamber tests. 6th International Conference on Geotechnical and Geophysical Site, T. Huszák, A. Mahler and E. Koch (eds.), Budapest, Hungary.
López Retamales, S., Canou, J., Dupla, J.C., Benz Navarrete, M. A. (2020). Penetrometre dynamique et indice de densite des sables. Application a l’evaluation du risque de liquefaction des massifs sableux. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur. Lyon, France.
López, S. y Benz, M. (2019). Comparación de los ensayos de penetrómetro de cono dinámico de energía variable PANDA® ensayo de placa de carga estática y dinámica. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering, N.P. López-Acosta et al. (eds.), Cancún, México, 1562–1571.
López, S., Benz, M., Navarro, J. y Zamora, D. (2018). Control geotécnico de obras viales mediante penetrómetro dinámico ligero de energía variable PANDA 2. X Congreso Chileno de Geotecnia, Valparaíso, Chile.
López, S., Benz, M. y Moustan, P. (2019). Comparación de los ensayos de penetración de cono dinámico (DCP) y penetrómetro de cono dinámico de energía variable PANDA®. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering., N.P. López-Acosta et al. (eds.), Cancún, México, 1552-1561.
López, S., Dupla, J.C., Canou, J. and Benz, M. (2021). Evaluation of soil liquefaction resistance with variable energy dynamic penetration test, PANDA®: state of the art. 6th International Conference on Geotechnical and Geophysical Site. T. Huszák, A. Mahler and E. Koch (eds.)
Lukiantchuki, J.A. (2012). Interpretação de resultados do ensaio spt com base em instrumentação dinámica. PhD thesis, Universidade de São Paulo, Departamento de Geotecnia, São Paulo, Brasil.
Lundberg, B. and Henchoz, A. (1977). Analysis of elastic waves from two-point strain measurement. Experimental Mechanics 17(6), 213–218.
Meunier, J. (1974). Contribution à l’étude des ondes et des ondes de choc dans les sols. Université Joseph Fourier Grenoble, France.
Odebrecht, E. (2003). Medidas de energia no ensaio SPT. PhD thesis. Universidade Federal do Rio Grande do Sul, Brasil.
Odebrecht, E., Schnaid, F., Rocha, M.M. and de Paula Bernardes, G. (2005). Energy efficiency for standard penetration tests. Journal of Geotechnical and Geoenvironmental Engineering 131(10), 1252–1263.
Omidvar, M., Iskander, M. and Bless, S. (2014). Response of granular media to rapid penetration. International Journal of Impact Engineering 66, 60-82.
Oularbi, A. (1989). Applicabilité des mesures dynamiques au calcul des pieux. Thèse de doctorat, Université de Nantes, France.
Oularbi, A. and Levacher, D. (2009). Réponse dynamique de la pointe d’un modèle de pieu dans un sol granulaire. Coastal and Maritime Mediterranean Conference, 49–52.
Schmertmann, J. (1978). The statics and dynamics of the standard penetration test. Symposium on Site Exploration in Soft Ground Using in Situ Techniques, 145–205 Schmertmann, J. and Palacios, A. (1979). Energy dynamics of SPT. Journal of Geotechnical Engineering Division 105(8), 909–926.
Schnaid, F., Odebrecht, E. and Rocha, M.M. (2007). On the mechanics of dynamic penetration tests. Geomechanics and Geoengineering 2(2), 137–146.
Tran, Q.A., Benz Navarrete, M.A., Breul, P., Chevalier, B., Moustan, P., (2019). Soil dynamic stiffness and wave velocity measurement through dynamic cone penetrometer and wave analysis. XVI Congreso Panamericano de Mecánica de Suelos e Ingeniería Geotécnica, N.P. López-Acosta et al. (eds.), Cancún, México, 401–408.
Tran, Q.A., Chevalier, B. and Breul, P. (2018). Spectral analysis of the response of coarse granular material to dynamic penetration test modelled with DEM. International Journal of Geosynthetics and Ground Engineering 4(3): 22.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Universidad Católica de la Santísima Concepción

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


