Analysis of the behavior of a tuned mass damper, considering uncertainty in the system parameters for low frequency content stochastic seismic excitations

Authors

  • Álvaro Suazo-Schwencke Universidad del Bío-Bío, Departamento de Ingeniería Civil y Ambiental, Avenida Collao 1202, Casilla 5-C, Concepción, Chile
  • Gilda Espinoza Universidad del Bío-Bío, Departamento de Ingeniería Civil y Ambiental, Avenida Collao 1202, Casilla 5-C, Concepción, Chile
  • Aylin Escobar Universidad del Bío-Bío, Departamento de Ingeniería Civil y Ambiental, Avenida Collao 1202, Casilla 5-C, Concepción, Chile

DOI:

https://doi.org/10.21703/0718-2813.2024.36.3004

Keywords:

Tuned mass damper, Parameter uncertainty, Stochastic analysis, Low frequency content excitation

Abstract

The influence on the behavior of a system of one degree of freedom controlled by a tuned mass damper (AMS) is studied, when uncertainties of 5, 10 and 20% are included in the mass ratio of the AMS, which is defined as the ratio between the mass of the AMS with respect to the mass of the main structure and the uncoupled translational period of the structure, in the positive and negative sense. A stochastic analysis is carried out, and a low frequency content excitation is considered. The uncertainty is entered into the mathematical modelling as a Taylor series expansion that considers only the firstorder approximation. Mass ratios are considered, from 0.02 to 0.05, the periods of the structure cover a range from 1.5 to 2.0 s. The results show that the inclusion of uncertainty in the period of the structure influences on the values of the optimal parameters and on the efficiency of the AMS. The latter is reduced or increased if the period is greater or less than the predominant period of excitation.

References

Bakre S.V. and Jangid R.S. (2007). Optimum parameters of tuned mass damper for damped main system. Structural Control & Health Monitoring 14(3), 448–470. doi.org/10.1002/stc.166

Crandall, S.H. and Mark, W.D. (1963). Random vibration in Mechanical Engineering. Academic Press, New York, US.

Den Hartog, J.P. (1934). Mechanical vibrations. McGraw-Hill, New York, US.

Espinoza, G., Quinteros, C., Gajardo, K., Suazo, A. y Quijada, S. (2021). Eficiencia de un amortiguador de columna de líquido sintonizado considerando una excitación sísmica de bajo contenido de frecuencias e incertidumbre. Obras y Proyectos 29, 54-68. doi.org/10.4067/S0718-28132021000100054

Espinoza, G., Rivas, S. y Suazo, A. (2020). Análisis de la eficiencia de un amortiguador combinado sintonizado con incertidumbre en los parámetros sometido a excitaciones sísmicas de bajo contenido de frecuencias. Obras y Proyectos 28, 68-77. doi.org/10.4067/S0718-28132020000200068

Ormondroyd, J. and J. P. Den Hartog (1928). The theory of dynamic vibration absorber. Transactions of the ASME 50(7): 9-22. doi.org/10.1115/1.4058553

Soto‐Brito, R. and Ruiz, S.E. (1999). Influence of ground motion intensity on the effectiveness of tuned mass dampers. Earthquake Engineering & Structural Dynamics 28(11):1255-1271. doi.org/10.1002/(SICI)1096-9845(199911)28:11<1255::AIDEQE865>3.0.CO;2-C

Downloads

Published

2024-12-03

Issue

Section

Articles

How to Cite

Analysis of the behavior of a tuned mass damper, considering uncertainty in the system parameters for low frequency content stochastic seismic excitations. (2024). Obras Y Proyectos, 36, 43-51. https://doi.org/10.21703/0718-2813.2024.36.3004