Equivalent static methods for dynamic analysis of tall buildings under wind loads in Cuba
DOI:
https://doi.org/10.21703/0718-281320233309Keywords:
Tall buildings, Dynamic component, Wind loadingsAbstract
Current designs of tall buildings are characterized by a gradual increase in height, greater slenderness and the use of lightweight materials, so they are highly susceptible to the dynamic actions of wind load. The gust effect factor (FER) method is used in several international standards for the determination of the dynamic response of tall buildings under wind load, this method differs from the methodology used by the current Cuban wind standard (NC285, 2003). This paper compares the current Cuban standard NC285 (2003) with the proposed update according to the wind parameters, the equivalent static method used, the values of base shear and maximum displacements considering as objects of study two buildings of 100 and 152 m high. In addition, a calculation procedure of the acting accelerations and the permissible limit acceleration criteria are presented. The results for the buildings under study show that the maximum across wind acceleration governs the serviceability state for the comfort studies and the maximum displacement values are higher for the new proposed standard only in the wind direction coming directly from the sea.
References
AIJ (2018). AIJ Recommendations for loads on buildings (2015). Architectural Institute of Japan, Tokyo, Japan.
ASCE 7-10 (2010). Minimum design loads for buildings and other structures. ASCE/SEI, Reston, Virginia, USA.
AS/NZS1170.2 (2021). Structural design actions, Part 2: Wind actions. Australian/New Zealand Standards, Wellington, New Zealand.
Ballate Delgado, A., Fernández Lorenzo, I. y Martín Rodríguez, P. (2021a). Aceleraciones inducidas por el viento en edificios altos. X Convención Científica Internacional de la Universidad de Matanzas, VII Taller Internacional de Ingenierías, Cuba.
Ballate Delgado, A., Fernández Lorenzo, I. y Martín Rodríguez, P. (2021b). Cálculo de las aceleraciones inducidas por el viento en edificios altos en Cuba. Revista Ciencia y Construcción 2(2), 23-32.
CNR-DT207 (2008). Guide for the assessment of wind actions and effects on structures. Italian National Research Council, Roma, Italy.
CSI (2018). ETABS v18. Computers & Structures, Inc. CSI. Structural and earthquake engineering software. USA.
Davenport, A.G. (1967). Gust loading factors. Journal of the Structural Division 93(3), 11-34.
Davenport, A.G. (1964). Note on the distribution of the largest value of a random function with application to wind loading. Proceedings Institution Civil Engineers 28(2), 187-196.
EN1991-1-4 (2005). Eurocode 1: Actions on structures — General actions — Part 1-4: Wind actions. Brussels, Belgium.
Fernández Lorenzo, I. y Elena Parnás, V.B. (2016). Análisis de métodos de vientos extremos para calcular las velocidades básicas. Revista Cubana de Ingeniería 7(2), 15-25.
García Miranda, J.A., López Litvinovich, A., Fernández Lorenzo, I. y Martín Rodríguez, P. (2019). Análisis de nuevos proyectos de edificios altos bajo carga de viento en La Habana. II Convención Científica Internacional, Universidad Central Marta Abreu de Las Villas, Cuba.
IS:875(Part-3) (2012). Wind loads on buildings and structures - Proposed draft & commentary. Document No IITK GSDMAWind 02-V 5.0. Indian Wind Code IWC, India.
ISO 4354 (2020). Wind actions on structures. International Organization for Standardization. Switzerland.
Kwon, D.K. and Kareem, A. (2013). Comparative study of major international wind codes and standards for wind effects on tall buildings. Engineering Structures 51, 23-35.
Longarini, N., Cabras, L., Zucca, M., Chapain, S. and Aly, A.M. (2017). Structural improvements for tall buildings under wind loads: comparative study. Shock and Vibration, article ID 2031248.
López Litvinovich, A., Martín Rodríguez, P. y Castañeda Hevia, A.E. (2018). Respuesta torsional de edificaciones bajo cargas de viento. Revista Arquitectura e Ingeniería 12(1), 1-13.
Luis García, K. (2017). Análisis estadístico de velocidades de viento para el cálculo de estructuras. Tesis de máster, Universidad Tecnológica de La Habana CUJAE, La Habana, Cuba.
Llanes Burón, C. (1988). Algoritmo para determinar las componentes dinámicas de las cargas de viento en edificios. Ingeniería Estructural IX(2), 113-120.
Llanes Burón, C. (1984a). Algunos criterios sobre el diseño de edificios altos. Ingeniería Civil (ISPJAE) 1, 16-28.
Llanes Burón, C. (1984b). Algunos métodos de análisis utilizados en edificios. Elementos paneles, tímpanos y pórticos interconectados. Ingeniería Civil (ISPJAE) 6, 24-30.
NBCC (2020). National building code of Canada. Canadian Commission on Buildings and Fire Codes, National Research Council of Canada, Ottawa, Ontario, Canada.
NC53-41 (1983, 1990). Elaboración de proyectos de construcción. Cargas de viento. Método de cálculo. Oficina Nacional de Normalización, La Habana, Cuba.
NC283 (2003). Densidad de materiales naturales, artificiales y de elementos de construccion como carga de diseño. Oficina Nacional de Normalización, La Habana, Cuba.
NC284 (2003). Edificacones. Cargas de uso. Oficina Nacional de Normalización, La Habana, Cuba.
NC285 (2003). Carga de viento. Método de cálculo. Oficina Nacional de Normalización, La Habana, Cuba.
SNiP2.01.07-85 (2001). Loads and effects. State Building Committee of USSR (Gosstroi of USSR). Moscow, USSR.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


