District heating in Chile and advances in the investigation on soil-pipe interactions in district heating networks

Authors

DOI:

https://doi.org/10.21703/0718-281320233308

Keywords:

District heating in Chile, Soil-pipe interaction, Monitoring, Soil temperature, Axial displacement of pipes

Abstract

The high level of air pollution in the cities of central and southern Chile, largely due to the burning of firewood, causes serious damage to people’s health, felling of native forests, house fires, and people’s deaths. An alternative that has been working for more than 100 years in the northern hemisphere is district heating. In Chile, there are two district heating systems operating for several decades and in recent years small projects have been slowly increasing. It is proposed to promote district heating for a greater number of population, either using industrial energy sources that are wasted or from non-polluting renewable energy sources. Then, the analysis is focused on the buried distribution pipe network in relation to its interaction with the ground related to mechanical and thermal response. These pipes are made of steel, insulated with foam and protected with a plastic jacket. Results of measurements in an instrumented pipe circuit connected to a district heating network in operation are presented. The axial displacements of the pipes in stationary conditions are possible to adequately estimate using the available calculation methodologies. However, steady-state conditions of sudden changes in temperature and pressure are difficult to estimate.

References

Achmus, M. (1995). The calculation of stresses and displacements of underground district heating pipelines. PhD thesis, Institute of Geotechnics, Leibniz University of Hannover, Germany (in German).

Achmus, M., and Rizkallah, V. (1997). The interaction between underground district heating pipelines and the surrounding soil. International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany, A.A. Balkema, Rotterdam, the Netherlands, vol. 2, 943–946.

AGFW FW 401 (2021). Installation and calculation of preinsulated bonded pipes for district heating networks. Part 10: Static design; basics of stress analysis. Frankfurt am Main, Germany.

Álvarez, B., Boso, A., Rodríguez, I., Hofflinger, A. and VallejosRomero, A. (2021). Who buys certified firewood? Individual determinants of clean fuel adoption for promoting the sustainable energy transition in southern Chile. Energy, Sustainability and Society 11(1), 1-9.

Banushi, G., Vega, A., Weidlich, I., Yarahmadi, N., Kim, J., Jakubowicz, I. and Sällström, J.H. (2021). Durability of district heating pipelines exposed to thermal aging and cyclic operational loads. Journal of Pipeline Systems Engineering and Practice 12(1), 04020067.

Boso, A., Hofflinger, A., Garrido, J. and Álvarez, B. (2022). Breathing clean air or cheaply heating your home: an environmental justice dilemma in Chilean Patagonia. Geographical Review 112(5), 667-687.

Carrasco, R., Jiménez, J. y Mardones, C. (2016). Análisis costobeneficio de la calefacción distrital en la zona central de Chile. Revista Internacional de Contaminación Ambiental 32(1), 35-45.

CDT (2019). Uso de energía de los hogares Chile 2018. In-Data, Corporación de Desarrollo Tecnológico CDT. Informe para el Ministerio de Energía, Santiago, Chile.

Celis, J.E., Morales, J.R., Zaror, C.A. and Inzunza, J.C. (2004). A study of the particulate matter PM10 composition in the atmosphere of Chillán, Chile. Chemosphere 54(4), 541–550.

Doyle, L., Weidlich, I. and Illguth, M. (2019). Anisotropy in polyurethane pre-insulated pipes. Polymers 11(12), 2074.

DS39 (2014). Establece norma de emisión de material particulado para los artefactos que combustionen o puedan combustionar leña y pellet de madera. Ministerio del Medio Ambiente, Gobierno de Chile.

EN 13941 (2019). District heating pipes. Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks: Part 1: Design. Part 2: Installation. European Committee for Standardization, Brussels, Belgium.

EN 253 (2020). District heating pipes. Preinsulated bonded pipe systems for directly buried hot water networks. Pipe assembly of steel service pipe, polyurethane thermal insulation and outer casing of polyethylene. European Committee for Standardization, Brussels, Belgium.

Frederiksen, S. and Werner, S. (2013). District heating and cooling. Studentlitteratur, Lund, Sweden.

Gerlach, T. and Achmus, M. (2017). On the influence of thermally induced radial pipe extension on the axial friction resistance. Energy Procedia 116: 351–364.

Hay, S., Weidlich, I., Wolf, I. and Villalobos, F.A. (2022). Analysis of pipe axial displacements from a monitored pipeline connected to an operating district heating network. Proceedings of the Institution of Civil Engineers - Energy 175(3), 150-161.

Hay, S., Villalobos, F.A., Weidlich, I. and Wolf, I. (2018). Analyses of axial displacement measurements from a monitored district heating pipeline system. Energy Procedia 149, 84-93.

Hernández, V., Böttcher, D. and Villalobos, F.A. (2016). A small geothermal project of low enthalpy in Bío Bío sand. First International Conference on Energy Geotechnics, Kiel, Germany, Wuttke, Bauer and Sánchez (eds.), Taylor & Francis Group, London, UK, 637-643.

MMA (2015). Proyecto piloto de calefacción distrital en Coyhaique. Presentación Seremi del Medio Ambiente de Aysén, Ministerio del Medio Ambiente, Chile.

MMA (2013). Primer reporte del estado del medio ambiente. Ministerio del Medio Ambiente, Santiago, Chile Pastén, C. (2012). Chile, energía y desarrollo. Obras y Proyectos 11, 28-39.

Schueftan, A. and González, A.D. (2015). Proposals to enhance thermal efficiency programs and air pollution control in southcentral Chile. Energy Policy 79, 48–57.

Schueftan, A. and González, A.D. (2013). Reduction of firewood consumption by households in south-central Chile associated with energy efficiency programs. Energy Policy 63, 823–832.

Silva, A. y Arcos, D. (2011). Aplicación del programa AERMOD para modelar dispersión de PM10 emitido por equipos de calefacción a leña en la ciudad de Constitución. Obras y Proyectos 9, 4–10.

Silva, A. y Godoy, G. (2016). Modelado de la dispersión de material particulado en la ciudad de Los Ángeles (Chile) a partir de las estufas a leña en el período de invierno usando AERMOD. Obras y Proyectos 20, 44-54.

UA (2014). La calefacción distrital se perfila como una solución para el problema de la contaminación en Temuco. Noticias uatonoma.cl, Universidad Autónoma de Chile.

UDT (2017). Estudio para la identificación de calor residual para proyectos de calefacción distrital ubicados en el área Metropolitana de Concepción. Estudio de prefactibilidad técnica y económica. Unidad de Desarrollo Tecnológico, Universidad de Concepción, Chile.

UDT (2013a). Calefacción distrital con biomasa en Chile. Evaluación de prefactibilidad técnica, económica y social de proyectos piloto en Osorno. Unidad de Desarrollo Tecnológico, Universidad de Concepción, Chile.

UDT (2013b). Calefacción distrital con biomasa en Chile. Evaluación de prefactibilidad técnica, económica y social de proyectos piloto en Rancagua. Unidad de Desarrollo Tecnológico, Universidad de Concepción, Chile.

Villalobos, F.A., Hay, S., Weidlich, I. and Wolf, I. (2019). Design, construction, and operation of a monitored district heating pipeline system. Journal of Pipeline Systems Engineering and Practice 10(3), 04019018.

Villalobos, F., Hay, S. and Weidlich, I. (2018). Monitoring in a district heating pipeline system. International Symposium on Energy Geotechnics SEG-2018, Lausanne, Switzerland, A. Ferrari and L. Laloui (eds.). Springer Series in Geomechanics and Geoengineering, 132-139.

Weidlich, I. (2008). Investigation of friction on cyclically and axially displaced buried pipes. PhD thesis, Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering, Leibniz University of Hannover, Germany.

Weidlich, I. and Achmus, M. (2008). Measurement of normal pressures and friction forces acting on buried pipes subjected to cyclic axial displacements in laboratory experiments. Geotechnical Testing Journal 31(4): 334–343.

Weidlich, I. and Achmus, M. (2006). Reduction of friction forces between soil and buried district heating pipes due to cyclic axial displacements. 10th International Symposium on District Heating and Cooling, 18-27.

Werner, S. (2017). International review of district heating and cooling. Energy 137: 617–631.

Downloads

Published

2023-06-19

Issue

Section

Articles

How to Cite

District heating in Chile and advances in the investigation on soil-pipe interactions in district heating networks. (2023). Obras Y Proyectos, 33, 74-83. https://doi.org/10.21703/0718-281320233308