Study of avalanche models using well-balanced finite volume schemes

Authors

DOI:

https://doi.org/10.21703/0718-281320233306

Keywords:

Avalanches, Natural disasters, Saint Venant's equations, Well balanced finite volumes, Hydrostatic reconstruction

Abstract

Avalanches are natural disasters with substantial human and economic consequences worldwide. Chile, a mountainous country, is particularly susceptible to these events. In this study, we employ a numerical technique based on the Saint-Venant system of differential equations and the well-balanced Finite Volume method with hydrostatic reconstruction to analyse snow avalanche behaviour, taking into account topography and friction as described by the VoellmySalm rheology model. The Rigopiano avalanche in Italy serves as a case study to test and validate our strategy, demonstrating the model’s potential in simulating real-world avalanche events. The numerical model is thoroughly explained, and the results for the real avalanche case are presented visually, showing close alignment with field data and estimates from the literature. In conclusion, we highlight key findings, emphasize the importance of further research in avalanche modelling, and suggest the potential applications of these models for avalanche risk management in regions like Chile.

References

Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R. and Perthame, B.T. (2004). A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing 25(6), 2050-2065.

Bocchiola, D., Galizzi, M., Bombelli, G.M. and Soncini, A. (2018). Mapping snow avalanches hazard in poorly monitored areas. The case of Rigopiano avalanche, Apennines of Italy. Natural Hazards and Earth System Sciences (discussion), 1-31.

Bouchut, F. (2004). Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Birkhäuser Verlag, Basel, Switzerland.

Bouchut, F., Fernández-Nieto, E.D., Koné, E.H., Mangeney, A. and Narbona-Reina, G. (2021). Dilatancy in dry granular flows with a compressible μ(I) rheology. Journal of Computational Physics 429, 110013.

Dafermos, C.M. (2000). Hyperbolic conservation laws in continuum physics. Springer, Berlin, Germany.

de’ Michieli Vitturi, M., Esposti Ongaro, T., Lari, G. and Aravena, A. (2019). IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches. Geoscientific Model Development 12(1), 581-595.

Ferziger, J.H., Peric, M. and Street, R.L. (2002). Computational methods for fluid dynamics. Springer Cham, Switzerland.

Fjordholm, U.S., Mishra, S. and Tadmor, E. (2011). Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. Journal of Computational Physics 230(14), 5587-5609.

Frigo, B., Bartelt, P., Chiaia, B., Chiambretti, I. and Maggioni, M. (2021). A reverse dynamical investigation of the catastrophic wood-snow avalanche of 18 January 2017 at Rigopiano, Gran Sasso National Park, Italy. International Journal of Disaster Risk Science 12, 40-55.

Issler, D. (2020). The 2017 Rigopiano avalanche—dynamics inferred from field observations. Geosciences 10(11): 466, 1-34.

Kurganov, A. and Petrova, G. (2007). A second-order wellbalanced positivity preserving central-upwind scheme for the Saint-Venant system. Communications in Mathematical Sciences 5(1), 133-160.

Popov, V.L. (2010). Contact mechanics and friction. Springer Berlin Heidelberg, Germany.

Pudasaini, S.P. and Hutter, K. (2007). Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Berlin, Heidelberg, Germany.

Ramírez, L. and Mery, J. (2007). Las avalanchas en Chile: efectos y sistemas de control. Revista de la Construcción 6(1), 48-63.

Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology 18, 221-226.

Savage, S.B. and Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica 86, 201-223.

Schweizer, J., Bartelt, P. and van Herwijnen, A. (2015). Snow avalanches. In Snow and Ice-Related Hazards, Risks, and Disasters, J.F. Shroder, W. Haeberli and C. Whiteman (eds.), Academic Press, Elsevier, 346–395.

Voellmy, A. (1955). Über die Zerstörunskraft von Lawinen (on the destructive force of avalanches). Schweizerische Bauzeitung 73, 212-217.

Zugliani, D. and Rosatti, G. (2021). TRENT2D: An accurate numerical approach to the simulation of two-dimensional dense snow avalanches in global coordinate systems. Cold Regions Science and Technology 190, 103343.

Downloads

Published

2023-06-19

Issue

Section

Articles

How to Cite

Study of avalanche models using well-balanced finite volume schemes. (2023). Obras Y Proyectos, 33, 55-63. https://doi.org/10.21703/0718-281320233306