Numerical simulation system for the coast of central Chile by coupling numerical models
DOI:
https://doi.org/10.21703/0718-281320233302Keywords:
Numerical modelling, Wave-current coupling, Two-way couplingAbstract
Using numerical modelling it is possible to anticipate unfavorable wave conditions for port activity. In particular, using coupled numerical models it is possible to include a larger number of variables, parameters, processes and interactions with focus on improving the representation and precision of processes that occur in the environment. This paper presents a numerical simulation system applied to the coast of central Chile using a coupled tool, which includes the wave model Wavewatch III (WW3), the hydrodynamic model Coastal and Regional Ocean Community (CROCO) and the atmospheric model Weather Research and Forecasting (WRF). The coupled modeling system accounts a oneway coupling from the WRF variables that CROCO and WW3 use as input, and a two-way coupling between the CROCO and WW3 models. The latter is developed through the implementation of the coupler software Ocean Atmosphere Sea Ice Soil (OASIS-MCT3) and the use of coupling tools provided by CROCO. Model results are contrasted with wave instrumental observations made by the National Hydrographic and Oceanographic Data Center of Chile (CENDHOC) using statistics error parameters such as bias, mean square error, and correlation. The hydrodynamic coupled simulations present a better adjustment to the measurements compared to those without coupling revealing a lower bias for significant wave height and mean directions. Likewise, higher values of the correlation coefficients are found in significant wave height with the hydrodynamic coupled tool.
References
Aguirre, C., Garreaud, R.D. and Rutllant, J.A. (2014). Surface ocean response to synoptic-scale variability in wind stress and heat fluxes off south-central Chile. Dynamics of Atmospheres and Oceans 65, 64-85.
Arakawa, A. and Lamb, V.R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics. General Circulation Models of the Atmosphere. Academic Press, New York, USA, vol. 17, 173-265.
Beyá, J., Álvarez, M., Gallardo, A., Hidalgo, H., Aguirre, C., Valdivia, J., Parra, C., Méndez, L, Contreras, F., Winckler, P. y Molina, M. (2016). Atlas de oleaje de Chile. Universidad de Valparaíso, Valparaíso, Chile.
C3S (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), European Union.
Carton, J.A. and Giese, B.S. (2008). A reanalysis of ocean climate using simple ocean data assimilation (SODA). Monthly Weather Review 136(8), 2999-3017.
Falvey, M., Ibarra, M., Pérez, R. y Hernández, V. (2018). Explorador eólico, descripción y guía de uso. Universidad de Chile, Santiago, Chile.
Haney, R.L. (1991). On the pressure force over steep topography in sigma coordinate ocean models. Journal of Physical Oceanography 21(4), 610-619.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D. and Thépaut, J. (2018). ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.C., Balaji, V., Duan, Q., Folini, D., Ji., D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M. and Williamson, D. (2017). The art and science of climate model tuning. Bulletin of the American Meteorological Society 98(3), 589–602.
Jacob, R., Larson, J. and Ong, E. (2005). M×N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. International Journal of High Performance Computing Applications 19(3), 293-307.
Jullien, S., Caillaud, M., Benshila, R., Bordois, L., Cambon, G., Dufois, F., Dumas, F., Gula, J., Le Corre, M., Le Gentil, S., Lemarié, F., Marchesiello, P., Morvan, G. and Theetten, S. (2022). Croco Technical and numerical documentation (1.2) Zenodo. France.
Larson, J., Jacob, R. and Ong, E. (2005). The model coupling toolkit: A new Fortran90 toolkit for building Multiphysics parallel coupled models. The International Journal of High Performance Computing Applications 19(3), 277-292.
Ministerio del Medio Ambiente (2019). Volumen 2: Determinación del riesgo de los impactos del Cambio Climático en las costas de Chile. Preparado por Winckler, P.; ContrerasLópez, M.; Vicuña, S.; Larraguibel, C.; Mora, J.; Esparza, C.; Salcedo, J.; Gelcich, S.; Fariña, J. M.; Martínez, C.; Agredano, R.; Melo, O.; Bambach, N.; Morales, D., Marinkovic, C.; Pica, A., Santiago, Chile.
NCAR (2018). WRF users page: WRF preprocessing system (WPS) geographical input data mandatory fields downloads. National Center for Atmospheric Research Mesoscale & Microscale Meteorology Laboratory, USA, https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
NOAA (2006). 2-minute gridded global relief data (ETOPO2) v2. National Geophysical Data Center, NOAA National Centers for Environmental Information, USA.
Oerder, V., Colas, F., Echevin, V., Masson, S., Hourdin, C., Jullien, S., Madec, G. and Lemarié, F. (2016). Mesoscale SST–wind stress coupling in the Peru–Chile current system: which mechanisms drive its seasonal variability?. Climate Dynamics 47, 2309–2330.
Park, S.H., Skamarock, W.C., Klemp, J.B., Fowler, L.D. and Duda, M.G. (2013). Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Monthly Weather Review 141(9), 3116-3129.
Putrasaham, D.A., Miller, A.J. and Seo, H. (2013). Regional coupled ocean–atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air–sea fluxes, and ocean eddies. Ocean Dynamics 63, 463-488.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wang, W., Powers, J., Duda, M., Barker, D. and Huang, X. (2021). A description of the advanced research WRF Version 4 (Vols. NCAR Tech. Note NCAR/TN-556+STR). National Center for Atmospheric Research, Boulder, Colorado, USA.
Splinder, D.M. and Tolman, H. (2008). Example of WAVEWATCH III for the NE Pacific. Tech. Note 259, NOAA/NWS/NCEP Camp Spring MD, USA.
Valcke, S., Craig, A. and Coquart, L. (2018). OASIS3-MCT user guide, OASIS3-MCT4.0, CECI, Université de Toulouse, CNRS. CERFACS-TR-CMGC-18-77, Toulouse, France.
WW3DG (2019). User manual and system documentation of WAVEWATCH III Development Group, version 6.07. Technical Note 333. NOAA/NWS/NCEP/MMAB, College Park, MD, USA.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


