Geometric scaling of the granulometric curve of granular materials from mining activities

Authors

DOI:

https://doi.org/10.4067/S0718-28132022000100095

Keywords:

Waste rock, Mining operations, Waste rock dumps, Geometric scaling, Granulometric curve, Contact stresses, Grain breakage

Abstract

The extraction of minerals in mining operations includes the removal of sterile material, as well as the transfer and disposal of these in deposits intended for temporary or permanent storage. These deposits known as waste rock dumps, landfills, or “tepetateras”, comprise materials that due to their size and disposition form cannot be analyzed in the laboratory and in the field, to obtain parameters of shear resistance, compressibility, and permeability, with the objective to perform designs or physical stability evaluations. The development and construction of large-scale equipment allows the analysis of larger specimens, but their availability is scarce. Currently, there are various methodologies that allow particle sizes to be reduced so that they can be tested on a smaller scale or conventional equipment. Among the methods developed is that of geometric scaling of the granulometric curve, and its use was initially given in the construction of rock dams. In this research, an analysis of this method is carried out, with application on dumped rockfills.

References

Bard, E., Campaña, J., Anabalón, M.E. and Apablaza, R. (2007). Waste rock behavior at high pressures. XIII Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Isla Margarita, Venezuela, vol. 1, 348-353.

Charles, J.A. (1973). Correlation between laboratory behaviour of rockfill and field performance, with particular reference to Scammonden Dam. PhD thesis, Imperial College, London, UK.

de la Hoz, K. (2007). Estimación de los parámetros de resistencia al corte en suelos granulares gruesos. Tesis de Magister, Universidad de Chile, Santiago, Chile.

Donaghe, R.T. and Torrey, V.H. (1985). Strength and deformation properties of earth-rock mixtures. Technical Report GL-85-9, Geotechnical Laboratory, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, USA.

Griffith, A.A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A 221, 163-198.

Hardin, B.O. (1985). Crushing of soil particles. Journal of Geotechnical Engineering 111(10), 1177-1192.

Hu, W., Dano, C., Hicher, P.Y., Le Touzo, J. Y., Derkx, F. and Merliot, E. (2011). Effect of sample size on the behavior of granular materials. Geotechnical Testing Journal 34(3), 186-197.

Indraratna, B., Wijewardena, L.S.S., and Balasubramaniam, A.S. (1993). Large-scale triaxial testing of grey wacke rockfill. Géotechnique 43(1), 37-51.

Joisel, A. (1962). La rupture des corps fragiles au cours de leur fragmentation. Publication technique 127. Centre d’études et de Recherches de l’Industrie des liants Hydrauliques. Paris, France.

Lade, P.V., Yamamuro, J.A. and Bopp, P.A. (1996). Significance of particle crushing in granular materials. Journal of Geotechnical Engineering 122(4), 309-316.

Lee, D.M. (1992). The angles of friction of granular fills. PhD thesis, University of Cambridge, UK.

Lee, K. and Farhoomand, I. (1967). Compressibility and crushing of granular soil in anisotropic triaxial compression. Canadian Geotechnical Journal 4(1), 68-86.

Leslie, D.D. (1963). Large-scale triaxial tests on gravelly soils. 2nd Pan-American Conference on Soil Mechanics and Foundation Engineering, Brazil, vol. 1, 181-202.

Leslie, D.D. (1969). Relationship between shear strength, gradation, and index properties of rockfill materials. 7th International Conference on Soil Mechanics and Foundation Engineering. Sociedad Mexicana de Mecánica de Suelos, Mexico City, Specialty session No. 13. Chapter 3, 201–2010.

Linero, S., Palma, C. and Apablaza, R. (2007). Geotechnical characterisation of waste material in very high dumps with large scale triaxial testing. International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Y. Potvin (ed.), Australian Centre for Geomechanics, Perth, Australia, 59-75.

Lowe, J. (1964). Shear strength of coarse embankment dam materials. 8th International Congress on Large Dams, ICOLD, Edinburgh, UK, vol. 3, 745-761.

Marachi, N. (1969). Strength and deformation characteristics of rockfill materials. PhD thesis, University of California, Berkeley, USA.

Marachi, N.D., Chan, C.K. and Seed, H.B. (1972). Evaluation of properties of rockfill materials. Journal of the Soil Mechanics and Foundations Division 98(1), 95-114.

Marsal, R.J. (1963). Contact forces in soils and rockfill materials. 2nd Pan-American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brazil, vol. 2, 67-98.

Marsal, R.J. (1967). Large scale testing of rockfill materials. Journal of Soil Mechanics and Foundation Division 93(2), 27-43.

Marsal, R.J. (1969). Particle breakage in coarse granular. Contributions and discussions on Mechanical Properties of Rockfill and gravel material. 7th International Conference on Soil Mechanics and Foundation Engineering. Sociedad Mexicana de Mecánica de Suelos, Mexico City, Specialty session No. 13. Chapter 3, 155–165.

Marsal, R.J. (1972). Resistencia y compresibilidad de enrocamientos y gravas. Series del Instituto de Ingeniería UNAM. México. SID306.

Naderian, A.R. and Williams, D.J. (1997). Bearing capacity of open-cut coal-mine backfill materials. Transactions of the Institution of Mining and Metallurgy. Section A - Mining Industry 106, 30-33.

Palma, C., Linero, S. y Apablaza, R. (2009). Caracterización geotécnica de materiales de lastre en botaderos de gran altura mediante ensayos triaxiales y odométricos de gran tamaño. III Conferencia Sudamericana de Ingenieros Geotécnicos Jóvenes, Córdoba, Argentina, 201-204.

Pigeon, Y. (1969). The compressibility of rockfill. PhD thesis, Imperial College, London, UK.

Thiers, G.R. and Donovan, T.D. (1981). Field density, gradation, and triaxial testing of large-size rockfill for Little Blue Run Dam. Laboratory Shear Strength of Soil Symposium, R.N. Yong and F.C. Townsend (eds.), SPT 740, ASTM International, Chicago, USA, 315-325.

Tombs, S.G. (1969). Strength and deformation characteristics of rockfill. PhD thesis, Imperial College, London, UK.

Valenzuela, L., Bard, E., Campaña, J. and Anabalón, M.E. (2008). High waste rock dumps—Challenges and developments. First International Seminar on the Management of Rock Dumps, Perth, Australia, 65-78.

Varadajaran, A, Sharma, K.G., Venkatachalam, K. and Gupta, A.K. (2003). Testing and modeling two rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering 129(3), 206-218.

Verdugo, R., Peters, G. y Bejarano, I. (2007). Evaluación de parámetros geomecánicos de suelos gruesos. VI Congreso Chileno de Geotecnia, PUCV y SOCHIGE, Valparaíso, Chile, artículo grupo A(10).

Verdugo, R., Gesche, R. y de la Hoz, K. (2003). Metodología de evaluación de parámetros de resistencia al corte de suelos granulares gruesos. 12th Pan American Conference on Soil Mechanics & Geotechnical Engineering, Massachusetts, USA, vol. 1, 691-696.

Verdugo, R. and de la Hoz, K. (2006). Strength and stiffness of coarse granular soils. Geotechnical Symposium Soil StressStrain Behaviour: Measurement, Modelling and Analysis. Rome, Italy, H.I. Ling, L. Callisto, D. Leshchinsky and J. Koseki (eds.), Springer, Dordrecht, The Netherlands, 243–252.

Zeller, J. and Wulliman, R. (1957). The shear strength of the shell materials for the Göschenenalp Dam, Switzerland. 4th Conference of Soil Mechanics and Foundation Engineering, London, UK, vol. 2, 399-404.

Downloads

Published

2022-06-29

Issue

Section

Articles

How to Cite

Geometric scaling of the granulometric curve of granular materials from mining activities. (2022). Obras Y Proyectos, 31, 95-103. https://doi.org/10.4067/S0718-28132022000100095