Direct displacement-based design method (DDBD) applied to reinforced concrete frame-wall systems
DOI:
https://doi.org/10.4067/S0718-28132020000200045Keywords:
Displacement-based design, Seismic analysis, Reinforced concrete structuresAbstract
This paper presents an application of the direct displacement-based design (DDBD) to a reinforced concrete frame-wall system (structures that utilize both frames and walls to resist earthquake actions in parallel). Firstly, the mathematical model is presented alongside a description of the methodology applied to determine the design displacement profile and strength proportion between walls and frames. Knowledge of the displacement profile and some recommendations for the combination of frame and wall damping components enables representation of the structure as an equivalent single-degree of freedom (SDOF) system. Secondly, the DDBD method is used to analyze and design a 12-storey building in which the displacements, storeydrifts, base shears, as well as the wall and frame strengths are determined. Then, some guidelines are presented to design the reinforced concrete structures, specifically those related to the stiffness used for the strength distribution and capacity design. Finally, a nonlinear time-history analysis is implemented in RUAUMOKO 2D, using three records from the Maule earthquake which are consistent with the displacement spectrum contained in the Chilean seismic code requirements (Supreme Decree N° 61). These analyses demonstrate that the DDBD method provides a robust estimation of the displacement demands expected during a seismic evento.
References
Beyer, K., Simonini, S., Constantin, R. and Rutenberg, A. (2014). Seismic shear distribution among interconnected cantilever walls of different lengths. Earthquake Engineering & Structural Dynamics 43(10), 1423-1441.
Blandon, C.A. and Priestley, M.J.N. (2005). Equivalent viscous damping equations for direct displacement based design. Journal of Earthquake Engineering 9(2), 257–278.
Carr, A. (2017). Ruaumoko 2D-dynamic analysis of 2-dimensional in-elastic structures. University of Canterbury, Christchurch, New Zealand.
Carr, A. (2007). Ruaumoko Manual – Volume 1: Theory. Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
Chrisp, D. (1980). Damping models for inelastic structures. Master’s thesis, University of Canterbury, Christchurch, New Zealand.
Chopra, A.K. (2001). Dynamics of structures. Prentice-Hall, New Jersey, USA.
Chopra, A.K. and McKenna, F. (2016). Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation. Earthquake Engineering and Structural Dynamics 45(2), 193–211.
DS61 (2011). Reglamento que fija el diseño sísmico de edificios y deroga Decreto Nº 117 de 2010. Decreto Supremo, Ministerio de Vivienda y Urbanismo, Diario Oficial de la República de Chile, Nº 40.133, 8-12.
Eurocode 8 (2004). Design provisions for earthquake resistance of structures - Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization CEN, Brussels, Belgium.
Grant, D.N., Blandon, C.A. and Priestley, M.J.N. (2005). Modelling inelastic response in direct-displacement based design. Research report ROSE – 2005/3, IUSS Press, Pavia, Italy.
Moehle, J.P. (1992). Displacement-based design of RC structures subjected to earthquakes. Earthquake Spectra 8(3), 403-428.
Morales, A. (2013). Aplicación del método directo basado en desplazamientos a un sistema mixto de hormigón armado y comparación con práctica Chilena. Actividad de graduación master IEG, P. Universidad Católica de Chile, Santiago, Chile.
Morales, A. (2015). Efectos de la incursión no-lineal de muros en pisos superiores sobre los marcos de sistemas mixtos de hormigón armado. XI Congreso Chileno de Sismología e Ingeniería Sísmica ACHISINA, Santiago, Chile, trabajo N°43.
Morales, A., Ceresa, P. and Hube, M. (2019). Seismic shear and moment demands in reinforced concrete wall buildings. 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2019, M. Papadrakakis and M. Fragiadakis (eds.), Crete, Greece. ECCOMAS Proceedia, 4115-4127.
NCh433 (2009). Diseño sísmico de edificios. Norma Chilena. Oficial NCh433 Of.96 Mod2009. Instituto Nacional de Normalización INN, Santiago, Chile.
NCh3171 (2017). Diseño estructural – disposiciones generales y combinaciones de carga. Norma Chilena Oficial. Instituto Nacional de Normalización INN, Santiago, Chile.
Newmark, N.M. (1959). A method of computation for structural dynamics. Journal of the Engineering Mechanics Division 85(3), 67-94.
NZS 3101 (2006). The design of concrete structures. Standards New Zealand NZS, Wellington, New Zealand.
Otani, S. (1974). SAKE-A computer program for inelastic response of R/C frames to earthquakes. Civil Engineering Studies, Structural Research Series No. 413, University of Illinois at Urbana-Champaign, Illinois, USA.
Panagiotou, M. and Restrepo, J.I. (2011). Displacementbased method of analysis for regular reinforced-concrete wall buildings: application to a full-scale 7-story building slice tested at UC–San Diego. Journal of Structural Engineering 137(6), 677-690.
Paulay, T. and Restrepo, J.I. (1998). Displacement and ductility compatibility in buildings with mixed structural systems. Bulletin of the New Zealand National Society for Earthquake Engineering 11, 7–12.
Paulay, T. and Priestley, M.J.N. (1992). Seismic design of reinforced concrete and masonry structures. Prentice Hall.
Paulay, T. (2002). A displacement-focused seismic design of mixed building systems. Earthquake Spectra 18(4), 689-718.
Priestley, M.J.N. (1998). Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design. Bulletin of the New Zealand Society for Earthquake Engineering 31(4), 246-259.
Priestley, M.J.N. (2003). Myths and fallacies in earthquake engineering, revisited. Rose School report, Pavia, Italy.
Priestley, M.J.N., Calvi, G.M. and Kowalsky M.J. (2007). Displacement-based seismic design of structures. IUSS Press, Pavia, Italy.
Rutenberg, A. and Nsieri, E. (2006). The seismic shear demand in ductile cantilever wall systems and the EC8 provisions. Bulletin of Earthquake Engineering 4:1–21.
Saiidi, M. and Sozen, M.A. (1979). Simple and complex models for nonlinear seismic response of reinforced concrete structures. Civil Engineering Studies, Structural Research Series No. 465, University of Illinois at Urbana-Champaign, Illinois, USA.
Shibata, A. and Sozen, M.A. (1976). Substitute-structure method for seismic design in R/C. Journal of the Structural Division 102(1), 1-18.
Sullivan, T.J., Priestley, M.J.N. and Calvi, G.M. (2006). Direct displacement-based design of frame-wall structures. Journal of Earthquake Engineering 10(1), 91-124.
Sullivan, T.J., Priestley, M.J.N. and Calvi, G.M. (2012). A model code for the direct displacement-based seismic design of structures. DBD12. IUSS Press, Pavia, Italy.
Takeda, T., Sozen, M.A. and Nielsen, N.M. (1970). Reinforced concrete response to simulated earthquakes. Journal of the Structural Division 96(12), 2557–2573.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


