Transient flow analysis using the method of characteristics MOC with five-point interpolation scheme

Authors

  • Twyman, John Twyman Ingenieros Consultores, Chile

DOI:

https://doi.org/10.4067/s0718-28132018000200062%20

Keywords:

Artificial viscosity, Courant number, Method of characteristics 2nd-order, Water hammer

Abstract

An original 2nd-order Method of Characteristics (MOC) which it works with a five-point interpolating scheme valid for solving the hyperbolic and quasilinear partial differential equations that describe the transient flow phenomenon in pipelines is shown. The results obtained by both MOC 2nd-order and exact solution (MOC 1st-order) are compared. It is shown that MOC 2nd-order allows obtain near-to-exact results within a wide range of Courant numbers.

References

Abbott, M.B. and Basco, D.R. (1989). Computational fluid dynamics: an introduction for engineers. Longman Sc. & Tech., New York.

Amara, L., Berreksi A. and Achour, B. (2013). Adapted MacCormack finite-differences scheme for water hammer simulation. Journal of Civil Engineering and Science 2(4), 226-233.

Brufau, P. and García-Navarro, P. (2000). Esquemas de alta resolución para resolver las ecuaciones de “shallow water”. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 16(4), 493-512.

Chaudhry, M.H. (2013). Applied hydraulic transients. Third edition. Springer, New York.

Chaudhry, M.H. (1979). Applied hydraulic transients. Van Nostrand Reinhold, New York.

Chaudhry, M.H. and Hussaini, M.Y. (1985). Second-order accurate explicit finite-difference schemes for waterhammer analysis. Journal of Fluids Engineering 107(4), 523−529.

Duan, H.-F., Lee, P. and Ghidaoui, M. (2014). Transient waveblockage interaction in pressurized water pipelines. Procedia Engineering 70, 573-582.

Ghidaoui, M.S. and Karney, B.W. (1994). Equivalent differential equations in fixed-grid characteristics method. Journal of Hydraulic Engineering 120(10), 1159-1175.

Goldberg, E.D. and Wylie, E.B. (1983). Characteristics method using time-line interpolations. Journal of Hydraulic Engineering 109(5), 670-683.

Holly, M. and Preissmann, A. (1977). Accurate calculation of transport in two dimensions. Journal of Hydraulic Engineering 103(11), 1259-1277.

Hou, Q., Kruisbrink A.C.H., Tijsseling A.S. and Keramat A. (2012). Simulating water hammer with corrective smoothed particle method. CASA-Report 12-14, Eindhoven University of Technology.

Karney, B.W. (1984). Analysis of fluid transients in large distribution networks. PhD thesis, University of British Columbia, Vancouver, Canada.

Karney, B.W. and McInnis, D. (1992). Efficient calculation of transient flow in simple pipe networks. Journal of Hydraulic Engineering 118(7), 1014-1030.

Karney, B.W. and Ghidaoui, M.S. (1997). Flexible discretization algorithm for fixed-grid MOC in pipelines. Journal of Hydraulic Engineering 123(11), 1004-1011.

Lai, C. (1989). Comprehensive method of characteristics for flow simulation. Journal of Hydraulic Engineering 114(9), 1074-1095.

Malekpour, A. and Karney, B.W. (2016). Spurious numerical oscillations in the Preissmann slot method: origin and suppression. Journal of Hydraulic Engineering 142(3), 04015060.

Shimada, M. and Okushima, S. (1984). New numerical model and technique for waterhammer. Journal of Hydraulic Engineering 110(6), 736-748.

Sibetheros, I.A., Holley, E.R. and Branski, J.M. (1991). Spline interpolation for waterhammer analysis. Journal of Hydraulic Engineering 117(10), 1332-1349.

Swaffield, J.A., Maxwell-Standing, K. (1986). Improvements in the application of the numerical method of characteristics to predict attenuation in unsteady partially filled pipe flow. Journal Research of the National Bureau of Standards 91(3), 149-156.

Trikha, A.K. (1975). An efficient method for simulating frequencydependent friction in transient liquid flow. Journal of Fluids Engineering 97(1), 97-105.

Twyman, J. (2004). Decoupled hybrid methods for unsteady flow in pipe networks. Editorial La Cáfila, Valparaíso.

Twyman, J. (2016a). Water hammer in a water distribution network. XXVII Latin American Hydraulics Congress IAHR, Spain Water & IWHR China, Lima, Peru, September 26-30.

Twyman, J. (2016b). Wave speed calculation for water hammer analysis. Obras y Proyectos 20, 86-92.

Twyman, J. (2016c). Water hammer analysis using method of characteristics. Revista de la Facultad de Ingeniería (U. de Atacama), 32, 1-9.

Twyman, J. (2017). Water hammer analysis in a water distribution system. Ingeniería del Agua 21(2), 87-102.

Twyman, J. (2018). Water hammer analysis using an implicit finitedifference method. Ingeniare: Revista Chilena de Ingeniería 26(2), 307-318.

Wan, W. and Mao, X. (2016). Shock wave speed and transient response of PE pipe with steel-mesh reinforcement. Shock and Vibration 2016, article ID 8705031.

Watters, G.Z. (1984). Analysis and control of unsteady flow in pipelines. Butterworths, Boston.

Wiggert, D.C. and Sundquist, M.J. (1977). Fixed-grid characteristics for pipeline transients. Journal of Hydraulic Engineering 103 (13), 1403-1415.

Wylie, E.B. and Streeter, V.L. (1978). Fluid transients. McGrawHill. International Book Company, USA

Wylie, E.B. (1984). Fundamental equations of waterhammer. Journal of Hydraulic Engineering 110(4), 539-542.

Yang, J.C. and Hsu, E.L. (1991). On the use of the reach-back characteristics method of calculation of dispersion. International Journal for Numerical Methods in Fluids 12(3), 225–235.

Yang, J.C. and Hsu, E.L. (1990). Time-line interpolation for solution of the dispersion equation. Journal of Hydraulic Research 28(4), 503–520.

Downloads

Published

2018-12-01

Issue

Section

Articles

How to Cite

Transient flow analysis using the method of characteristics MOC with five-point interpolation scheme. (2018). Obras Y Proyectos, 24, 62-70. https://doi.org/10.4067/s0718-28132018000200062