Escoria de cobre: una alternativa sustentable para la construcción de pavimentos rígidos

Autores/as

DOI:

https://doi.org/10.21703/0718-2813.2025.38.3637

Palabras clave:

Escoria de cobre, Material cementicio suplementario, Pavimentos de hormigón, Durabilidad

Resumen

Este artículo investiga el uso de escoria de cobre (EC), residuo masivo de la industria minera, como material cementicio suplementario (MCS) en mezclas de hormigón con posibles usos en pavimentos, evaluando las propiedades mecánicas y durabilidad frente a agentes agresivos. Experimentalmente, se observó que reemplazar hasta un 20% (volumen) del cemento con EC no reduce significativamente la resistencia a la flexo-tracción (FT), y que un 10% de EC aumenta en un 3,3% la resistencia a la FT a largo plazo (360 días) respecto al hormigón de referencia (sin EC). Además, se registró una reducción de la profundidad de penetración de agua en un 36% y 38%, a los 28 y 90 días respectivamente. Se concluye que la EC tiene un uso potencial para mezclas de hormigón para pavimentos, con un adecuado desempeño estructural y un menor impacto medioambiental, aunque son necesarios estudios adicionales específicos de pavimentación para validar estos hallazgos.

Referencias

Aghaeipour, A. and Madhkhan, M. (2020). Mechanical properties and durability of roller compacted concrete pavement (RCCP) – a review. Road Materials and Pavement Design 21(7), 1775–1798. https://doi.org/10.1080/14680629.2019.1579754

ACI PRC-211.1 (2022). Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute, Detroit MI, USA.

Arredondo, P.W.C., Silva, Y.F., Araya-Letelier, G. and Hernández, H. (2024). Valorization of recycled aggregate and copper slag for sustainable concrete mixtures: mechanical, physical, and environmental performance. Sustainability 16(24), 11239. https://doi.org/10.3390/su162411239

ASTM C293 (2016). Standard test method for flexural strength of concrete (using simple beam with third-point loading. ASTM International, West Conshohocken PA, USA, https://doi.org/10.1520/C0293_C0293M-16

ASTM C494 (2019). Standard specification for chemical admixtures for concrete. ASTM International, West Conshohocken PA, USA, https://doi.org/10.1520/C0494_C0494M-19

ASTM C39 (2021). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken PA, USA, https://doi.org/10.1520/C0039_C0039M-21

ASTM C150 (2022). Standard specification for Portland cement. ASTM International, West Conshohocken PA, USA, https://doi.org/10.1520/C0150_C0150M-22

Barros, K.S., Vielmo, V.S., Moreno, B.G., Riveros, G., Cifuentes, G. and Bernardes, A.M. (2022). Chemical composition data of the main stages of copper production from sulfide minerals in Chile: a review to assist circular economy studies. Minerals 12(2), 250. https://doi.org/10.3390/min12020250

Burbano-Garcia, C., Silva, Y.F., Araya-Letelier, G. and González, M. (2025). Hydration kinetics and mechanical performance of cement pastes with copper slag as supplementary cementitious material. Journal of Building Engineering 112, 113673. https://doi.org/10.1016/j.jobe.2025.113673

Chen, W., Li, B. and Xu, Y. (2023). Recycled aggregate concrete for pavement rapid repair. In Multi-Functional Concrete with Recycled Aggregates. Woodhead Publishing Series in Civil and Structural Engineering, Y. Xu and R. Jin (eds.), 251–265. https://doi.org/10.1016/B978-0-323-89838-6.00010-4

de Pedro, J.P.Q., Lagao, J.A.T. and Ongpeng, J.M.C. (2023). Life cycle assessment of concrete using copper slag as a partial cement substitute in reinforced concrete buildings. Buildings 13(3), 746. https://doi.org/10.3390/buildings13030746

Dhir, R.K., de Brito, J., Mangabhai, R. and Lye, C.Q. (2017). Introduction. In Sustainable Construction Materials: Copper Slag, Elsevier, 1–8. https://doi.org/10.1016/B978-0-08-100986-4.00001-8

DS148 (2004). Aprueba reglamento sanitario sobre manejo de residuos peligrosos. Decreto Supremo 148. Diario Oficial de la República de Chile, Ministerio de Salud, Santiago, Chile.

EPA (1992). Method 1311: Toxicity characteristic leaching procedure. Test methods for evaluating solid waste, physical/ chemical methods (SW-846). US Environmental Protection Agency, Washington DC, USA.

GCCA (2024). Concrete future - roadmap to net zero. Cement and Concrete around the World. Global Cement and Concrete Association, London, UK.

He, R., Zhang, S., Zhang, X., Zhang, Z., Zhao, Y. and Ding, H. (2021). Copper slag: The leaching behavior of heavy metals and its applicability as a supplementary cementitious material. Journal of Environmental Chemical Engineering 9(2), 105132. https://doi.org/10.1016/j.jece.2021.105132

Juenger, M.C.G., Snellings, R. and Bernal, S.A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research 122, 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008

Karim, R., Islam, Md. H., Datta, S.D. and Kashem, A. (2024). Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Studies in Construction Materials 20, e02828. https://doi.org/10.1016/j.cscm.2023.e02828

Mahajan, D.S. and Muhammad, S. (2024). Assessment of the viability of pozzolanic activity of copper slag for use as supplementary cementitious material in ordinary Portland cement. Journal of Building Engineering 83, 108375. https://doi.org/10.1016/j.jobe.2023.108375

MINVU (2018). Código de normas y especificaciones técnicas de obras de pavimentación. Estándares Técnicos de Construcción. División Técnica de Estudio y Fomento Habitacional. Ministerio de Vivienda y Urbanismo, Santiago, Chile.

Moura, W.A., Gonçalves, J.P. and Lima, M.B.L. (2007). Copper slag waste as a supplementary cementing material to concrete. Journal of Materials Science 42(7), 2226–2230. https://doi.org/10.1007/s10853-006-0997-4

Najimi, M. and Pourkhorshidi, A.R. (2011). Properties of concrete containing copper slag waste. Magazine of Concrete Research 63(8), 605–615. https://doi.org/10.1680/macr.2011.63.8.605

Shi, C., Meyer, C. and Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling 52(10), 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008

Silva, Y.F., Burbano-Garcia, C., Araya-Letelier, G. and Izquierdo, S. (2025a). Sulfate attack performance of concrete mixtures with use of copper slag as supplementary cementitious material. Case Studies in Construction Materials 22, e04846. https://doi.org/10.1016/j.cscm.2025.e04846

Silva, Y.F., Burbano-Garcia, C., Rueda, E.J., Reyes-Román, A. and Araya-Letelier, G. (2025b). Short- and long-term mechanical and durability performance of concrete with copper slag and recycled coarse aggregate under magnesium sulfate attack. Applied Sciences 15(15), 8329. https://doi.org/10.3390/app15158329

USGS (2020). Copper statistics and information. Statistics and information on the worldwide supply of, demand for, and flow of the mineral commodity copper. United States Geological Survey, USA.

Wang, D., Wang, Q. and Huang, Z. (2020). Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resources, Conservation and Recycling 162, 105037. https://doi.org/10.1016/j.resconrec.2020.105037

Wang, Y., Yuan, Z., Yang, J., He, Y., He, X., Su, Y. and Strnadel, B. (2023). Utilization of ultra-fine copper slag to prepare ecofriendly ultrahigh performance concrete by replacing silica fume. Construction and Building Materials 406, 133476. https://doi.org/10.1016/j.conbuildmat.2023.133476

Yaseen, N., Alcivar-Bastidas, S., Irfan-ul-Hassan, M., Petroche, D.M., Qazi, A.U. and Ramirez, A.D. (2024). Concrete incorporating supplementary cementitious materials: Temporal evolution of compressive strength and environmental life cycle assessment. Heliyon 10(3), e25056. https://doi.org/10.1016/j.heliyon.2024.e25056

Yepes, V. (2023). El hormigón para pavimentos de hormigón en carreteras. Poli Blogs. Universidad Politécnica de Valencia, España.

Zeyad, A.M., Shubaili, M. and Abutaleb, A. (2023). Using volcanic pumice dust to produce high-strength self-curing concrete in hot weather regions. Case Studies in Construction Materials 18, e01927. https://doi.org/10.1016/j.cscm.2023.e01927

Descargas

Publicado

2025-12-10

Número

Sección

Artículos

Cómo citar

Escoria de cobre: una alternativa sustentable para la construcción de pavimentos rígidos. (2025). Obras Y Proyectos, 38, 97-106. https://doi.org/10.21703/0718-2813.2025.38.3637