Análisis de la caracterización geomecánica de materiales granulares gruesos usando el método de granulometría paralela

Autores/as

  • Leonardo Dorador Arcadis Chile Chile
  • Felipe A. Villalobos Universidad Católica de la Santísima Concepción image/svg+xml

DOI:

https://doi.org/10.4067/S0718-28132020000100050

Palabras clave:

Coarse granular materials, Parallel gradation method, Geotechnical characterization, Size-scaling, Shear strength, Particle breakage

Resumen

La caracterización geotécnica de materiales granulares gruesos tales como suelos de granulometría muy gruesa, enrocados, lastres de mina y otros materiales semejantes, es uno de los temas clave, pero menos abordados y estudiados en ingeniería geotécnica. Aunque existen algunas normas y cierta práctica geotécnica aceptada, no hay normativa de escalamiento de tamaño, lo cual representa un punto crítico en el avance de la ingeniería (diseño de detalle) en estructuras grandes que involucran este tipo de materiales. Varias técnicas de escalamiento de tamaño están disponibles, las cuales tienen ventajas y desventajas. Entre estas técnicas, el método de granulometría paralela (también conocido como granulometrías homotéticas), es uno de los usados actualmente en la práctica por más de 50 años, pero sorpresivamente solo unos pocos estudios han corroborado su capacidad y usando materiales específicos. Este trabajo examina una base de datos detallada abarcando el desarrollo de este método desde sus primeros usos hasta ahora. La aplicación de este método se analiza basándose principalmente en el ángulo de fricción interna máximo y el parámetro de rotura de partículas de Marsal (Bg).

Referencias

Abbas, A.M. (2012). Uncompacted void content versus maximum particle size for rockfill materials. International Journal of Engineering Science and Technology 4(1), 197-203.

ASTM C128 (2015). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International, West Conshohocken, PA, USA.

ASTM D4253 (2016). Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA.

ASTM D4254 (2016). Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken, PA, USA.

Bareither, C.A., Benson, C.H. and Edil, T.B. (2006). Reproducibility of direct shear tests conducted on granular backfill materials. Geotechnical Testing Journal 31(1), 84-94.

Becker, E., Chan, C.K. and Seed, H.B. (1972). Strength and deformation characteristics of rockfill materials in plane strain and triaxial compression tests. Report No TE-72-3. Dept. of Civil Engineering, University of California, Berkeley, USA.

de la Hoz, K. (2007). Estimation of the shear strength parameters of coarse granular materials. MSc thesis, University of Chile, Santiago, Chile (in Spanish).

D’Espessailles, N., Dorador, L. and Pastén, C. (2014). Particle breakage in blasting sands from a mining tunnel under simple shear stresses. IV South-American Young Geotechnical Engineering Conference. Bogotá, Colombia (in Spanish).

Dewangan, P.K., Pradhan, M. and Ramtekkar, G.D. (2015). Effect of fragment size, uniformity coefficient and moisture content on compaction and shear strength behavior of coal mine overburden dump material. European Journal of Advances in Engineering and Technology 2(12), 1-10.

Dorador, L. (2018). Una revisión de la metodología de granulometría paralela o escalamiento de curvas homotéticas aplicado a la caracterización geotécnica de materiales granulares gruesos. X Congreso Chileno de Geotecnia, Valparaíso, paper 1259.

Dorador, L. (2010). Experimental analysis of the methodologies of homothetic and shear curves in the geotechnical property evaluation of coarse soils. MSc thesis, University of Chile, Santiago, Chile (in Spanish).

Dorador, L. and Urrutia, J. (2017). Geotechnical characterisation of coarse-grained soils containing weak and strong particles mixtures. 70th Canadian Geotechnical Conference, GeoOttawa 2017, Ottawa, ON, Canada.

Dorador, L., Anstey, D. and Urrutia, J. (2017). Estimation of geotechnical properties on leached coarse material. 70th Canadian Geotechnical Conference, GeoOttawa 2017, Ottawa, ON, Canada.

Frossard, E., Hu, W., Dano, C. and Hicher, P.Y. (2012). Rockfill shear strength evaluation: a rational method based on size effects. Géotechnique 62(5), 415-427.

Fu, W.X. and Dai, F. (2015). Scale dependence of shear strength for a coarse granular soil using a superimposition-nest type of direct shear apparatus. Arabian Journal of Geosciences 8(12), 10301–10312.

Gesche, R. (2002). Evaluation methodology of the shear strength parameters of coarse grained soils. Civil Engineer degree project. University of Chile, Santiago, Chile (in Spanish).

Hamidi, B., Varaksin, S. and Nikraz, H. (2013). Relative density concept is not a reliable criterion. Proceedings of the Institution of Civil Engineers: Ground Improvement 166(2), 78-85.

Holtz, W.G. (1973). The relative density approach - uses, testing requirements, reliability, and shortcomings. Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, Selig, E. and Ladd, R., (eds.). ASTM STP 523, 5-17.

Honkanadavar, N.P. and Sharma, K.G. (2016). Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model. Journal of Rock Mechanics and Geotechnical Engineering 8(3), 350-365.

Hu, W., Dano, C., Hicher, P.Y., Le Touzo, J.Y., Derkx, F. and Merliot, E. (2011). Effect of sample size on the behavior of granular materials. Geotechnical Testing Journal 34(3), 186-197.

Idel, K.H. (1960). Die Scherfestigkeit rolliger Erdstoffe. Veröffentlichungen des Institutes für Bodenmechanik und Grundbau der Technischen Hochschule Fridericiana in Karlsruhe, Germany (in German).

Jernigan, R.L. (1998). The physical modeling of soils containing oversized particles. PhD thesis, University of Colorado at Boulder, USA.

Kim, D. and Ha, S. (2014). Effects of particle size on the shear behavior of coarse grained soils reinforced with geogrid. Materials 7(2), 963-979.

Koerner, R.M. (1970). Effect of particle characteristic on soil strength. Journal of the Soil Mechanics and Foundations Division 96(4), 1221-1233.

Le Pen, L.M., Powrie, W., Zervos, A., Ahmed, S. and Aingaran, S. (2013). Dependence of shape on particle size for a crushed rock railway ballast. Granular Matter 15(6), 849–861.

Leslie, D.D. (1963). Large scale triaxial tests on gravelly soils. Second PanAmerican Conference on Soil Mechanics and Foundation Engineering, Brazil, 181 – 202.

Lowe, J. (1964). Shear strength of coarse embankment dam materials. 8th International Congress on Large Dams, Edinburgh, UK. vol.3, 745-761.

Marachi, N.D., Chan, C.K., Seed H.B. and Duncan, J.M. (1969). Strength and deformation characteristics of rock fill materials. Report No. TE-969-5, Department of Water Resources, University of California, Berkeley, California, USA.

Marsal, R.J. (1973). Mechanical properties of rockfill. Embankment Dam Engineering, Casagrande volume, R.C. Hirshfield and S.J. Polous (eds.), John Wiley & Sons Inc., New York, USA, 109-200.

Parkin, A.K. (1991). Through and overflow rockfill dams. Advances in Rockfill Structures, E. Maranha das Neves (ed.), Kluver Academic Publishers, The Netherlands, 571–592.

Riquelme, J. and Dorador, L. (2017). Methodology to determine maximum and minimum void index in coarse granular soils from small-scale tests correlations. 70th Canadian Geotechnical Conference, GeoOttawa 2017, Ottawa, ON, Canada.

Santamarina, J.C. and Cho, G.C. (2004). Soil behaviour: The role of particle shape. Advances in Geotechnical Engineering: The Skempton Conference, Thomas Telford, London, UK, vol. 1, 604-617.

Tavenas, F.A., Ladd, R.S. and La Rochelle, P. (1973). Accuracy of relative density measurements: results of a comparative test program. Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils, Selig, E. and Ladd, R., (eds.). ASTM STP 523, American Society for Testing and Materials, 18-60.

Valdes, J.R. and Leleu, S.L. (2008). Influence of mineral composition on the simple shear response of sands: Experimental study. Journal of Geotechnical and Geoenvironmental Engineering 134(12), 1820-1824.

Vallerga, B.A., Seed, H.B., Monismith, C.L. and Cooper, R.S. (1957). Effect of shape, size, and surface roughness of aggregate particles on the strength of granular materials. Road and Paving Materials: Second Pacific Area National Meeting, American Society for Testing and Materials, Los Angeles, California, USA, ASTM STP 212, 63-74.

Varadarajan, A., Sharma, K.G., Abbas S.M. and Dhawan, A.K. (2006). The role of nature of particles on the behaviour of rockfill materials. Soils and Foundations 46(5), 569-584.

Varadarajan, A., Sharma, K.G., Venkatachalam, K. and Gupta, A.K. (2003). Testing and modeling two rockfill materials. Journal of Geotechnical and Geoenvironmental Engineering 129(3), 206-218.

Verdugo, R. and de la Hoz K. (2006). Strength and stiffness of coarse granular soils. Geotechnical Symposium Soil Stress Strain Behaviour: Measurement, Modelling and Analysis. Rome, March 16–17, H.I. Ling, L. Callisto, D. Leshchinsky, and J. Koseki (eds.), Springer, Dordrecht, The Netherlands, 243–252.

Verdugo, R., Gesche, R. and De la Hoz, K. (2003). Evaluation methodology of the shear strength parameters of coarse granular soils. 12th Pan American Conference on Soil Mechanics and Geotechnical Engineering, Cambridge, MA, USA, vol. 1, 691-696 (in Spanish).

Wang, J.J., Qiu, Z.F., Deng, W.J. and Zhang, H.P. (2016). Effects of mudstone particle content on shear strength of a crushed sandstone–mudstone particle mixture. Marine Georesources & Geotechnology 34(4), 395-402.

Descargas

Publicado

2020-06-01

Número

Sección

Artículos

Cómo citar

Análisis de la caracterización geomecánica de materiales granulares gruesos usando el método de granulometría paralela. (2020). Obras Y Proyectos, 27, 50-63. https://doi.org/10.4067/S0718-28132020000100050