Análisis topológico de los cables en un modelo de torre atirantada
DOI:
https://doi.org/10.4067/S0718-28132019000200065Palabras clave:
Torre atirantada, Antitorsor, Cables, Nolinealidad, VientoResumen
Las torres atirantadas son estructuras ampliamente empleadas en el área de las telecomunicaciones para soportar antenas a grandes alturas. Estas estructuras son sensibles a las cargas de viento y presentan un índice de fallo elevado frente al paso de fuertes vientos. En el comportamiento estructural de estas torres intervienen diversos factores como la topología de los cables (cantidad de cables en la torre, cantidad de cables por anclaje, ángulo de los cables con relación al fuste), la tensión de los cables en el momento de actuar la carga de viento y también la presencia de sistema reductores de la torsión, llamados antitorsores. En este trabajo se investiga mediante modelos de elementos finitos en SAP2000, el efecto que ejercen la topología de los cables y la presencia de los sistemas de reducción de torsión (antitorsores) a diferentes alturas en el comportamiento estructural de un modelo típico de torre atirantada, teniendo en cuenta las características dinámicas de la carga de viento, así como la no-linealidad geométrica de la estructura.
Referencias
Alshurafa, S., Alhayek, H. And Polyzois, D. (2019). Finite Element Method For The Static And Dynamic Analysis Of Frp Guyed Tower. Journal Of Computational Design And Engineering 6(3), 436-446.
Andreu, A., Gil, L. and Roca, P. (2006). A new deformable catenary element for the analysis of cable net structures. Computers & Structures 84(29-30), 1882-1890.
Ballaben, J.S., Sampaio, R. and Rosales, M.B. (2017a). Uncertainty quantification in the dynamics of a guyed mast subjected to wind load. Engineering Structures 132, 456-470.
Ballaben, J.S., Guzmán, A.M. and Rosales, M.B. (2017b). Nonlinear dynamics of guyed masts under wind load: sensitivity to structural parameters and load models. Journal of Wind Engineering and Industrial Aerodynamics 169, 128-138.
CSA S37-01 (2001). Antennas, towers, and antenna supporting structures. Canadian Standards Association, Rexdale, Canada.
Clobes, M. and Peil, U. (2011). Unsteady buffeting wind loads in the time domain and their effect on the life-cycle prediction of guyed masts. Structure and Infrastructure Engineering 7(1-2), 187-196.
Clobes, M., Willecke, A. and Peil, U. (2009). A refined analysis of guyed masts in turbulent wind. Fifth European & African Conferences on Wind Engineering EACWE 5, Florence, Italy.
Davenport, A.G. (1995). The response of slender structures to wind. In Wind Climate in Cities, Cermak, J.E., Davenport, A.G., Plate, E.J. and Viegas, D.X. (eds.). Series E: Applied Sciences, vol. 277. Springer, Dordrecht, 209-239.
EC 3: Part 3-1 (2007). Eurocode 3: Design of steel structures - Part 3-1: Towers, masts and chimeneys-towers and masts. Brussels, Belgium.
Elena Parnás, V., Martín Rodríguez, P. and Castañeda Hevia, A.E. (2013). Structural behavior of guyed mast with asymmetrical anchors. Journal of the Brazilian Society of Mechanical Sciences and Engineering 35(2), 61-67.
Fernández, I., Elena, V.B., Martín, P., Corona, Y. y Hernández, I.A. (2018). Análisis dinámico de una torre autosoportada sujeta a cargas de viento y sismo. Obras y Proyectos 23, 78-86.
Hamada, A., King, J.P.C., El Damatty, A.A., Bitsuamlak, G. and Hamada, M. (2017). The response of a guyed transmission line system to boundary layer wind. Engineering Structures 139, 135-152.
Harikrishna, P., Annadurai, A. Gomathinayagam, S. and Lakshmanan, N. (2003). Full scale measurements of the structural response of a 50 m guyed mast under wind loading. Engineering Structures 25(7), 859-867.
Kahla, N.B. (1995). Influence of star mounts on guyed towers. Computers & Structures 54(5), 989-995.
Kewaisy, T.H. (2001). Nonlinear dynamic interaction between cables and mast of guyed-tower systems subjected to windinduced forces. PhD thesis, Texas Tech University, USA.
Lazzari, M., Saetta, A.V. and Vitaliani, R.V. (2001). Non-linear dynamic analysis of cable-suspended structures subjectd to wind actions. Computers & Structures 79(9), 953-969.
LeBlanc Bakmar, C. (2004). Wind load on guyed mast. Master thesis, Technical University of Denmark.
Magued, M.H., Bruneau, M. and Dryburgh, R.B. (1989). Evolution of design standards and recorded failures of guyed towers in Canada. Canadian Journal of Civil Engineering 16(5), 725-732.
Martín Rodriguez, P. and Elena Parnás, V. (2011). Simplified methods of dynamic analysis for guyed towers under the action of extreme winds. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia 34(3), 185-193.
NC450 (2006). Edificaciones-Factores de Carga o PonderaciónCombinaciones. Oficina Nacional de Normalización, La Habana, Cuba.
NC285 (2003 ). Carga de viento. Método de cálculo. Oficina Nacional de Normalización, La Habana, Cuba.
Páez, P.M. and Sensale, B. (2017). Analysis of guyed masts by the stability functions based on the Timoshenko beam-column. Engineering Structures 152, 597-606.
Peil, U. (1993). Dynamic behaviour of guys. Meeting of IASS Working Group 4: Towers and Masts, Prague, Czech Republic.
Peil, U., Nölle, H. and Wang, Z.H. (1996). Dynamic behaviour of guys under turbulent wind load. Journal of Wind Engineering and Industrial Aerodynamics 65(1-3), 43-54.
Pezo, M.L., Bakic, V.V. and Markovic, Z.J. (2016). Structural analysis of guyed mast exposed to wind action. Thermal Science 20(5), 1473-1483.
Roitshtein, M.M. (1999). Analysis of masts and towers failures. IASS masts and towers working group meeting. Krakow, Poland.
SAP2000 (2016). Structural analysis program. Integrated software for structural analysis and design, v.16. Computers and Structures Inc., Berkeley, USA.
Shi, H. and Salim, H. (2015). Geometric nonlinear static and dynamic analysis of guyed towers using fully nonlinear element formulations. Engineering Structures 99, 492-501.
Smith, B.W. (2007). Communication structures. ThomasTelford, London, Great Britain.
Sparling, B.F. and Wegner, L.D. (2007). Estimating peak wind load effects in guyed masts. Wind and Structures 10(4), 347-366.
TIA/EIA-222-G (2005). Structural standards for steel antenna towers and antenna supporting structures. Telecommunications Industry Association, USA.
Travanca, R., Varum, H. and Real, P.V. (2013). The past 20 years of telecommunication structures in Portugal. Engineering Structures 48, 472-485.
Zhu, N. (2007). Wind tunnel test for guyed mast dynamic characteristics under wind loads. MSc thesis, University of Saskatchewan, Canada.
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.


