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Introduction
The external fractality of the lithosphere was discovered by 
Mandelbrot (1982). Rough coastlines can be reproduced in 
hatched magnifications of sections. The log-log plot of the 
minimum number N of squares needed to pave a coastline 
(Figure 1a) with squares versus their size d is a straight 
line as shown in Figure 1b. This means N = Nr (dr /d)γ with 
reference values Nr , dr  and a fractal dimension 1 < γ < 
2. The self-similarity holds within bounds or cutoffs dmin 

and dmax. The coastline length is thus l ≈ Nr dr (dr /d)γ-1. The 
rough surface of a landscape can exhibit a similar fractality 
(Figure 2a). The minimum number N of cubes of size d 
needed to enclose the surface is N = Nr (dr /d)2γ if plane 
cross sections exhibit γ as above. The area is thus A ≈ Nr 
d 2 (dr /d)2(γ−1). Length and area are no more extensive as 
without roughness, i.e. for γ = 1.

A rough line or surface is called monofractal if its γ is the 
same everywhere, otherwise multifractal. This concept 
works likewise for time-dependent evolutions observed at 
the surface of the lithosphere, e.g. seismograms of points 
or hydrograms of rivers. Mandelbrot (1999) uses the rather 

The spatio-temporal mechanical fractality of the lithosphere 
can be represented by means of Lévy-statistics and fractional 
calculus. This novel concept is outlined with geometrical and 
energetic arguments. The fractality originates from the pore 
system and appears in displacements, stresses and seismicity. 
It is shown that the roughness may be neglected for the stable 
range, but not for critical phenomena at the verge of energetic 
convexity. The outline leads from rough coastlines via sand 
samples to tectonic chain reactions. Equations and theorems are 
physically interpreted without algebra and proofs.
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La fractalidad mecánica espacio-temporal de la litósfera puede 
ser representada por medio de la estadística de Lévy y cálculo 
fraccional. Este nuevo concepto es planteado con argumentos 
geométricos y energéticos. La fractalidad se origina del sistema 
poroso y aparece en desplazamientos, tensiones y sismicidad. Se 
muestra que la rugosidad podría no ser considerada en el rango 
estable, pero esto no es posible en fenómenos críticos al borde 
de convexidad energética. Este planteamiento cubre bordes 
costeros rugosos, muestras de arena y reacciones tectónicas en 
cadena. Ecuaciones y teoremas son interpretados físicamente 
sin la necesidad de álgebra ni pruebas.
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poetic expression mild and wild roughness in case of mono 
or multifractality, respectively. These notions may be taken 
over to spatially and temporally fractal distributions of 
displacements and forces, i.e. to mechanics with roughness. 
This requires an objective definition of gradients and 
time rates although rough distributions versus site xi and 
time t have no unique tangents. Corresponding objective 
integrals over xi and t are needed for balances of classically 
extensive quantities, viz. mass, energy and momentum or 
parts of them.

Mandelbrot knew of course that landscapes are shaped by 
tectonics, erosion and sedimentation, but his algorithms 
produce at best look-alikes with roughness and do 
not represent mechanisms. He attributed multifractals 
to ‘multiplicative cascades’, but this again is mere 
mathematics and not yet physics. Humid sand surfaces, e.g. 
in a box or at the beach (Figure 2b), can exhibit fractality, 
and may substitute theoretical physical models with 
roughness. Scaling up model test results to bigger sizes 
and longer times requires a dimensional backbone from 
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physical theories.  This is not supplied by the classical rules 
of similarity in case of fractality.

Figure 1: a) Boxes of size d covering a coastline (Attica, Greece) 
and b) number of boxes versus reciprocal value of their size 
(qualitative)

The internal fractality of lithosphere sections - or of small-
scale substitutes - is not as thoroughly visible as the external 
one, boreholes and sensors give at best fragmentary hints. 
Natural pore systems (πoρoς = passage) appear to be 
fractal. Their monofractality can be explained by means 
of rather fictitious data (see in the next section). Systems 
of tectonic faults, which are more porous than their 
vicinity, exhibit self-similarity in hatched sections. This 
kind of fractality is likewise observed in model tests and 
hypoplastic simulations as shown in Figure 3 (Gudehus 
2011). The non-uniformity of groundwater flow points also 
to fractal pore systems (the permeability is proportional to 
the square of the pore size). It appears that the complete 
lithosphere, i.e. from its free surface down to the Moho 
discontinuity, has a fractal pore system, of course with 
lower pore fractions for higher pressures and temperatures.

Spatial distributions of internal pressures and stresses 
exhibit likewise fractality. This force-roughness plays 
already a role for soil samples, when one tries to capture it 
by hidden variables like back stress or intergranular strain 

(Gudehus 2011).

Figure 2: Fractal sand structures of ca. 0.3 m height at the beach, 
a) mountain ridge (photo R. Gudehus) and  b) cliff (photo M. 
Poblete)

Figure 3: a), b) Patterns of shear bands in a model setup and c), 
d) in two steps of a simulation (Gudehus 2011)

Such approaches are not explicitly fractal, but tacitly 
scale-independent within reasonable bounds. The force-
roughness is known from model tests and building sites 
with sand, it causes an indeterminacy of structural forces in 
or at the ground. It is more marked for rocks so that stresses 
at samples or structures in situ can hardly be determined. 
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The world stress map of the lithosphere exhibits spatial 
fluctuations with wavelenghts from ca. 1 km to 1000 km 
(Heidbach et al. 2010). Stresses in the lithosphere are 
estimated by means of borehole measurements and plate 
tectonics. Several decades of fluctuation lengths suggest 
fractality, certainly multifractality in connection with 
which convection cycles of the asthenosphere impose 
some order to the lithosphere.

The force-roughness can be frozen for a while in stable 
sections of the lithosphere (what that means will be 
explained later on).  Changes at boundaries - from above, 
below or aside - lead to changes of position and state of 
lithosphere sections or its small substitutes. Apart from 
smooth and rather slow changes due to thermal activation, 
such changes are jerky and accompanied by seismicity.  
The sound-roughness is audible as crackling of soil and 
rock samples, and more dramatically with breaking 
structures at or in the ground. Earthquakes exhibit similar 
emissions with lower frequencies due to bigger extensions. 
The spectra are often simplified as 1/f noise, this notion 
is also used by Mandelbrot (1999) if the slope in a log-
log spectrum diverges from -1 and indicates fractality. 
One may understand force-roughness as latent sound-
roughness, and would like to know when and how the 
latter arises.

The dynamics of the lithosphere is evidently multifractal 
and so complex that at best sections or substitutes of 
them can be captured by mechanical models. Initial 
states are inevitably partly subjective, and an additional 
indeterminacy arises from arbitrary boundaries separating 
near-fields from far-fields (Gudehus 2011). The interplay 
of thermal and seismic activations depends on space 
and time scales and it should not be separated from the 
fractality. Gain and loss of stability is evidently a key 
issue, but the treatment of it with fractality poses open 
questions. Critical phenomena with pattern formation and 
chaos for geo-matter were first considered with minute 
sand avalanches (Bak et al. 1987). Similar attempts were 
made with fractals in structural geology (Turcotte 1997) 
and rock mechanics (Xie 1993).

Recently, Gudehus and Touplikiotis (2012) proposed a 
more comprehensive approach by means of the fractional 

calculus, and a more mathematical paper on fractional 
stability is underway (Gorenflo et al. 2012). The present 
paper is less mathematical, however, it employs further 
physical arguments. First, the transition from fractal and 
Lévy-type distributions to fractional balances is outlined 
with the focus on geo-matter. Second, attenuation and 
subordination are introduced for fractionally uniform 
zones and indicated beyond. Third, the quasi-local loss 
of stability and then with chain reactions of increasing 
size are presented. Fourth, the interplay of seismic and 
thermal interactions is touched. Finally, conclusions with 
summary and outlook complete this more qualitative than 
quantitative paper.

From fractals to fractional balances
Consider the fractal pore system of an idealized layer 
as shown in Figure 4. Straight lines cut solid and void 
fractions in such a way that hatched magnifications exhibit 
a similar rough sequence (Figure 4a). The solid mass m in 
a cube of size d yields a straight log-log plot (Figure 4b) 
with reference values mr , dr and a fractal dimension ca. 
0.9 < β < 1 instead of β = 1 without roughness. This holds 
within cutoffs dmin near a rock fraction size and dmax below 
the layer thickness h. The solid fraction is thus ns = nr (d/dr)β−1 
for lines, ns = nr (d/dr)2(β−1) for areas and ns = nr (d/dr)3(β−1) 
for volumes, whereas ns= nr holds in the classical approach 
(β = 1) by Monge (Guyon and Troadec 1994).

A log-log histogram of numbers Np of pores with size dp 

yields a straight line section with slope −3β, Figure 4c. 
This corresponds to the major part of a skew stable Lévy-
distribution (Sato 1999). More precisely speaking, such 
a probability distribution comes close to a power-law 
in the falling branch. It is called stable since any sum of 
independent random values with such a distribution has 
the same kind of distribution. This uncommon central 
limit theorem holds strictly without cutoffs, but then 
mean values and higher moments diverge. There is no 
divergence with cutoffs, and random sums tend again 
to such distributions except for extremely big numbers 
(Mantegna and Stanley 1994). Such distributions can arise 
from successive fragmentation or agglomeration, e.g. sizes 
of grown-up animals from microbes to giants in habitats 
can exhibit them.
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Figure 4: a) Layer with fractal pore system, b) solid mass of 
cubes, c) number of pores versus size, d) prism in the layer and 
e) vertical stress by weight versus depth

Vertical pressures by weight in fractally porous layers can 
be calculated by adding up the solid volumes of cubes, 
multiplying by specific gravity gρs and dividing by the 
base area. Figure 4d shows that a prism of height h and 
cross section b2 has thus

(1)

The pressure σ for a given depth decreases with increasing 
b, whereas without roughness (β = 1), σ = gρsnsh, i.e. σ is 
independent of b. The fractality (β < 1) requires a reference 
length dr and holds within cutoffs. Transition from addition 
of cubes to integration leads to the fractional integral

(2)

with λ ≡ σ/(ρs nr dr ), ξ ≡ x/dr and µ = 1. Applying (2) for 
x= x1 from 0 to h, and again for x = x2 = x3 from 0 to b, 
leads to (1).

More generally speaking, the Riemann integral over a fractal 
distribution is equivalent to a fractional integral (Ren et al. 
2003). The latter is a generalization of Cauchy’s formula 
for multiple integrals to repeated integration of fractional 
degree α (Gorenflo and Mainardi 2000). It requires the 
Gamma function Γ and dimensionless variables, e.g. by 
means of a reference length dr. With fractal uniformity (1) 

and (2) indicate that the weight is no more extensive as 
without roughness (cf. length and area in the Introduction). 
We call quantities fractionally extensive which would be 
extensive (in Rankine’s sense) without spatial roughness, 
but they have to be expressed by fractional integrals with 
it. Cutoffs can be applied using expression (2) as well as 
(1) by keeping b within dmin and dmax < h.

The inversion of (2) reads dβλ/dξβ = µ with a fractional 
derivative. This may be understood as a weighted average 
of secants for different section lengths, or as an objective 
gradient of a fractal distribution by means of the Gamma 
function and a reference length for normalization. This 
gradient is no more local in the classical continuum sense, 
but refers to a point in the fractional image of roughness. In 
the case considered here the fractal distribution represents 
the internal force-roughness by weight (Figure 4e). More 
precisely Dα λ with a specified operator Dα can be written 
instead of dαλ/dξα , this is needed for algebraic operations 
(Gorenflo and Mainardi 2000).

Turning to temporal fractality, we consider now a fractally 
uniform cubical range of jammed rock fractions. The latter 
may be grains or more densely packed pieces of rock. They 
constitute a perfect sample without deviations from fractal 
uniformity along the boundaries. We consider evolutions 
of spatial averages with time t, keeping in mind that 
spatial distributions are fractal so that classically extensive 
quantities are fractionally extensive as outlined above for 
weight. Imagine non-disturbing sensors which indicate 
seismicity, stress and shape of our cube. Figure 5 shows 
idealized plots of microseismic bursts and simultaneous 
sudden changes of stress and shape. This may be concluded 
from triaxial tests with dry hard-grained samples, confined 
by a membrane under constant pressure (Gudehus and 
Touplikiotis 2012). Slow axial loading causes audible 
microseismic bursts, and almost simultaneous changes 
of overall state and shape as long as the travel times of 
microseismic waves within our cube are much shorter than 
the intervals between seismic bursts.

Cube-averaged extensive properties Xi, in particular 
seismic energy, boundary forces (expressed by stress 
components) and lengths (changing by deformation) 
exhibit the same temporal  fractality. Although the temporal 
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Figure 5: Schematic fractal evolution of averages of a cubical 
zone of jammed grains, a) seismicity, b) stress and c) shape

fluctuations have different intensities box-counting as in 
Figure 1, would thus yield the same fractal dimension. 
This justifies fractional balance equations

(3)

with reference quantities Xir and tr , a loss factor κi and 
an input µi. Xi dwindles with constant κi and µi = 0, 
monotonously for 0 < α < 1 and with oscillations for 1 < α 
< 2. For a constant µ and ca. 0.8 < α < 1 our Xi /Xir tends 
to µ. For harmonic µ(t/tr ) the term Xi/Xir becomes periodic 
(harmonic for α = 1 or 2). Comparing such asymptotic 
solutions with observed attractors can serve to estimate 
α, κi and µi (Gudehus and Touplikiotis 2012). Expression 
(3) works only for increasing t, this may be attributed to 
causality for dissipative evolutions.

Balance equations like (3) are coupled by means of Xi-
dependent κi and µi. In an economic sense they express that 
the capital of market partners varies fractally with time by 
capital-dependent loss, and by input or output among each 
other and with the surroundings. For our idealized cube of 
jammed rock fractions coupled balances refer to shape and 
energies (elastic, seismic and thermal). This will be partly 
outlined later on and balances of extensive quantities will 
already be treated in the sequel. Coupled balances like (3) 
can be transformed to classical, i.e. non-fractional ones 
by means of fractional time stretching. This means that 

t is transformed so that fractional integrals change into 
ordinary ones, and it is justified for the stable range with 
ca. 0.9 < α < 1.

Spatio-temporal balances of fractionally extensive 
quantities Xi can in simple cases be written as

(4)

with reference quantities Xir, tr, dr, and fractalities α, β as 
outlined further above and summation over j for fractional 
gradients. Expression (4) represents a balance for a section 
of space-time with fractal distribution. The loss term 
with κi does not need to be proportional to the fractional 
gradient of Xi as written for simplicity in (4). In addition to 
shape and energies as for fractally uniform cubes, balanced 
quantities are mass and momentum, both are conserved for 
sums of constituents.

We assume isofractality, i.e. α = β. This is justified by the 
same narrow range of α and β and by the spatio-temporal 
coupling via microseismic elastic waves. The latter 
suggests dr /tr = cs with the velocity of elastic shear waves 
cs for isotropic states. With higher void ratios and lower 
pressures α decreases, which depends also on mineral and 
temperature. Apart from this moderate multifractality (see 
more in subsequent sections) one can transform (4) into 
non-fractional balances by means of a fractional space- 
time stretching (Gudehus and Touplikiotis 2012). This is 
justified for the stable regime with the narrow range of α.

Attenuation and subordination
As proposed by Gudehus (2010) for sand, we assume the 
specific elastic energy

(5)

for jammed grains or rock fractions. Therein ∆ and 
Θ denote invariant volumetric and deviatoric elastic 
deformations. The solid hardness hs and the exponent ν ≈3 
depend on mineral and particle shape, the factors a and 
b depend on the porosity. Mean pressure and root mean 
square shear stress are energy- conjugated via p = ∂we/∂∆ 
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and τ = ∂we/∂Θ. These first and second invariants can be 
related with components σij and , third invariants could 
also be taken into account.

Small deviations of stress and elastic strain from an 
equilibrium are captured by the hypoelastic relation

(6)

with summation in kl. Using invariants this linearization 
implies the quadratic form

(7)

which describes second-order changes of we for small 
variations of ∆ and Θ.  Equilibrium states, i.e. δwe=0 with 
δ2we > 0, are stable as any deviation requires additional 
energy. Then δ2we > 0 holds also with components, i.e. 
δσijδϵe > 0 with summation in ij. 

We consider now a fractally uniform zone with hypoelastic 
deviations from a stable equilibrium. Fractal uniformity 
means that stress σij and elastic strain ϵe

ij at equilibrium 
have no fractional gradients. Both have the same fractality 
due to σij = ∂we /∂ϵe. With isofractality as presented in the 
previous section, a small deviation of position ui implies a 
velocity

(8)

and the deformation

(9)

These are fractional  representations of fractal distributions 
with dimensionless quantities for metric correctness.

The balance of momentum reads

(10)

with normalization as further above and summation in j. 
It expresses the conservation of momentum with fractality 
as by (4) without input as small deviations do not change 

the weight. Insertion of (6), (8) and (9) into (10) yields the 
fractional wave equation

(11)

with summation in j and kl. Without roughness, i.e. α = 1, 
and with we= a∆2 + bΘ2, (11) is reduced to the classical 
wave equation for isotropic linear elasticity. With α = 1, 
we by (5) and ν = 2.5, expression (11) was analyzed by 
means of the classical ansatz ui  exp(ωt + kixi ), leading to 
realistic stress- and porosity-dependent wave velocities of 
granular samples in the stable range (Mayer and Liu 2010).

The vectorial fractional differential equation (11) is not 
given in the literature. Only scalar special versions, which 
can be derived by confining to isotropic states (Gudehus 
and Touplikiotis 2012), have been solved for certain initial 
and boundary conditions (Mainardi and Tomoirotti 1997). 
They reveal a hysteretic damping for the hypoelastic range 
which would be missed by spatio-temporal stretching so 
that (11) is simplified with α = 1 to the version of Mayer 
and Liu (2010). A novel solution of (11) was obtained with 
simultaneous Laplace and Fourier transformations and 
Green functions (Gorenflo et al. 2012). Other than without 
roughness, whereby a classical ansatz leads to an eigenvalue 
problem as mentioned above, a fractional eigenvalue 
problem is only obtained with integral transformations. For 
the stable range all eigenvalues are real so that propagations 
can occur. However, due to the fractality elastic waves are 
no more sinusoidal and dissipation occurs since any wave 
generates smaller irregular ones. Extended exponential 
functions, which were proposed by Mittag-Leffler 100 
years ago, provide an orthogonal base.

Without fractality hypoelastic oscillations would last 
forever and could be decomposed into harmonics or 
eigenmodes. There are no harmonics with fractality, but 
with stability the wave equation dictates a characteristic 
autogeneous dwindling after an initial disturbance. It 
can be proven (Gorenflo et al. 2012) that the power-law 
spectrum of an initial seismicity experiences a downward 
and rightward shift in the log-log plot (Figure 6). The 
amplitudes fade with t by power-laws as all wave fractions 
induce erratic oscillations with higher frequencies due to 
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the fractal pore system. This kind of attenuation works as an 
autogeneous attractor for different initial seismicities and 
is characteristic of stable states with fractality. This works 
already for the hypoelastic range and without gradients. 
With them the attenuation is enhanced by radiation. With 
dissipative dislocations the attenuation after an initial small 
disturbance is faster than hypoelastic and leaves back a 
small change of position and state, whereas it would not 
cause any trace without roughness.

Figure 6: Initial seismic spectrum and shift (arrow) by attenuation 
in the stable range

A cubical fractally uniform zone of jammed grains may 
now be deformed monotonously from a stable state of rest. 
After a hypoelastic onset microseismicity arises with an 
intensity Ts which may be named seismocrasy (Gudehus 
2010). This name corresponds to the Greek ‘thermocrasy’ 
for temperature and is more suitable than ‘granular 
temperature’. As without roughness the specific seismic 
energy is ws roT2

s for assuring the stability of seismodynamic 
equilibria without elastic strain (Gudehus et al. 2010). For 
Ts > 0 the elastic stress = ∂we /∂ ϵij deviates from the 
Cauchy stress σij = (1 − αs )  with a Ts-dependent factor 
0 < αs < 0.8 as the grain contacts are jiggling. The elastic 
strain is augmented by overall stretching and reduced by 
seismically activated relaxation.

Better than with the classical calculus, the balance 
equations can be written as in (3) for temporal fractality 
(Gudehus and Touplikiotis 2012). They are coupled via Ts 

and state that 
- the seismic energy rises by average relative velocities of 
grains and dwindles by transition into heat,

- the elastic energy rises by changes of shape and dwindles 
by seismic relaxation.

Monotonous deformations with fractional rate D lead to 
Ts   D and to fractionally hypoplastic changes of σij. This 
subordination, which is characterized by a monotonous 
exogeneos attractor (Gudehus 2010), works in the stable 
range. It can be reduced for non-fractional hypoplastic 
relations by fractional time-stretching (Gudehus 
and Touplikiotis 2012). Subordination implies rate-
independence.

One may argue that the additional effort of using the 
fractional calculus is not worth it if it turns out that it is 
not needed. Well, not really, because the mechanical 
roughness is real and should not just be ignored. With the 
above argument the success of non-fractional models is 
further justified in spite of fractality for the stable range 
(but not otherwise, see next section).  The argument works 
also for evolutions with pulsating seismicity in the stable 
range, i.e. for subordinations which imply pulsations of 
Ts. The behavior is then intermittently hypoelastic and 
hypoplastic with likewise rate-independent transitions. 
This kind of subordination is characterized by cyclic 
exogeneous attractors (Gudehus 2011). Fractional time-
stretching leads to non-fractional equations which produce 
realistic attractors (Gudehus et al. 2010). This means that 
hidden variables like back stress or intergranular strain 
for the internal force-roughness are not needed in energy-
based models in spite of the actual fractality. This helps in 
particular for cumulative effects (Gudehus 2010) and for 
rather fractal driven variations of Ts.

A kind of quantum seismodynamics is desirable for 
explaining the microseismicity during subordinations of 
cubical zones of jammed grains. The acoustic emission 
indicates seismons, i.e. seismic monads (Gudehus 2010), 
with a truncated power-law spectrum. These can be attributed 
to successive bursts of fractally distributed groups of grains 
which are jammed up to the stability limit. In the stable 
range seismons have randomly distributed polarizations, but 
other than with phonons for thermal oscillations the seismic 
energy is not conserved and not Gauss-like partitioned. The 
fractional Schrödinger equation

(12)
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yields the probability density ΨΨ* of seismons with mass 
m and potential V. Like its precursor for particles (Laskin 
2000), expression (12) yields truncated Lévy-spectra by 
means of Laplace and Fourier transformations. This suits 
to the stability of Lévy-distributions and the truncated 
fractality of microseismic bursts. The original Schrödinger 
equation, i.e.  (12) with α = 1, yields much richer discrete 
spectra. The matter becomes more intricate with critical 
phenomena (next section).

Subordination in the large can occur in lithosphere 
sections, or in small substitutes at beaches or building 
sites or in model setups. It requires stability and excludes 
thermal activation (see last section). Coupled fractional 
balance equations such as (4) may then be reduced to non-
fractional ones by fractional space-time stretching (as in 
previous section). This can suffice for the mild subcritical 
roughness with ca. 0.9 < α < 1 for suitably chosen regions. 
Relics of former critical phenomena (next section) cause 
an inevitable indeterminacy which is linked with rather 
vague notions such as fabric and inherent anisotropy. The 
indeterminacy can be reduced sometimes by means of 
attractors in the large (Gudehus 2011), which constitute a 
subordination in suitable soil regions.

The issue is more complex with rock and with bigger 
sections of the lithosphere. The mechanical roughness is 
apparently wilder for building sites and mines, this can 
be attributed to spatially variable cutoffs from previous 
critical phenomena and implies more indeterminacy than 
with soil. Fault patterns in the lithosphere are evidently 
multifractal and can lead to further critical phenomena (next 
section). Cases of coarse-graining may still correspond 
to subordination of the earth crust by magma convection 
below, but even in those cases seismic features of interest 
can at best be crudely estimated.

Loss of stability and chain reactions
Consider a fault system with a fractionally uniform zone 
at the verge of energetic convexity as shown in Figure 7a. 
This may represent a fractal fault zone with negligible 
fractional gradients at the verge of stability. One may 
imagine a zone in a fault system which is critical in a range 
with much smaller size than its depth. This specification 
is inevitably imprecise, an interpretation will be offered 

further below. Fractional uniformity means in particular 
that the stress tensor has the same alignment throughout 
our zone. Criticality with the simplest reasonable specific 
energy we by (5) means that we has a chair-point for the 
Coulomb condition τ2/p2 = 2b/(ν − 2) (see Figure 7b). Then 
an increasing part of the elastic energy becomes kinetic for 
a one-sided section of elastic strain deviations.

Figure 7: a) Critical zone of a fault system, b) elastic energy 
surface with tangent plane at the verge of convexity and c) 
spontaneous spectral shift of seismicity

The condition δ2we = 0 by (7) can be translated into 
Cartesian stress and strain components. It means a linear 
dependence of the hypoelastic compliances, i.e. det 
∂2we/∂ ∂  = 0. Thus the fractional wave equation (11) 
degenerates as propagations are impossible for the sector 
with ∂2we< 0. Instead, one-sided waves in this sector 
increase spontaneously at the expense of we. Combined 
Laplace and Fourier transformation with Green functions 
(Gorenflo et al. 2012) then produces a shift of an initial 
truncated power-law spectrum to the left and upwards as 
can be observed in Figure 7c. In other words, at a critical 
point an initial seismicity grows by the same factors for 
wave-length and -height throughout the wave package.

As for attenuations (previous section) the elastic strain 
components change with such a ratio that the loss of we 
is maximal. With two invariants and we by (5) this means 
that the spontaneous deviation from a chair point follows 
the steepest descent. This can be interpreted as maximal 
rate of entropy production due to the positive feedback of 
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seismons (Gudehus 2010). The Lévy-spectrum exhibits a 
slight rightwards rotation of the log-log plot, but this kind 
of seismogenesis is still a stable Lévy-process. If the initial 
weak seismicity is not Lévy-like it is there with the named 
magnification so that one can speak of an autogeneous 
strange attractor (Gudehus 2011; Gorenflo et al. 2012).

The same spectral shift is also obtained with further degrees 
of freedom. The simplest model has only two invariants 
and two different stress components, one can incorporate a 
third invariant and a less symmetric stress state. One could 
extend the approach with polar quantities which arise 
from shear banding, this implies gradients which will be 
discussed below. One could also incorporate the extension 
of cracks by means of surface integrals (Budiansky and 
Rice 1973), and could include sorption energies for cracks 
(Rice 1978). The path-independent integrals enable energy 
balances for fractal crack systems, including critical points 
in the energetic sense of Griffith (1921). Fractional critical 
phenomena engulf thus the verge of energetic convexity 
and fractal distributions. This was addressed already in 
an overview paper on the mechanics of natural solids 
(Gudehus 2009), therein convexity was called concavity 
by considering an energy landscape from above, not from 
below as in mathematics and theoretical physics.

This approach is apparently insufficient as critical zones 
cannot exist with any extension due to their instability. 
One should instead imagine seismic reaction fronts which 
propagate to a certain extent. The front is fractal as with a 
forest fire or with irregular dominoes standing on a table. 
The reaction (e.g. burning or overturning) occurs in the 
front with a rather fuzzy extension, it leaves back a stable 
dead zone and propagates as long as a reaction in the zone 
ahead is triggered by the propagation. A chain reaction in 
a fractal fault zone propagates as long as the part ahead of 
the front is nearly critical so that the stress redistribution 
due to the collapse in the front leads to critical points 
immediately ahead.

One may try to extend Hadamard’ s concept of propagating 
discontinuities to fractional models of fractal evolutions 
with reaction fronts, but this will be mathematically 
difficult. Instead and less strictly, one can estimate the 
rate of propagation via a gradient-delayed collapse. This 

means that any critical zone has gradients of state towards 
its non-critical vicinity which reduce the rate of extension 
of seismic waves due to sidewards radiation (Gorenflo et 
al. 2012). The rate of extension can be reduced to zero, then 
the propagation is stuck. The upper cutoff bounds the rate 
of extension, this is an estimate of the propagation velocity 
of the seismic reaction front. This estimate is crude as it 
stems from a fractional image of a fractal reality, since 
gradients are fractional and can at best be estimated, as 
well as fractional balances for a reaction front are partly 
represented.

Consider real earthquakes for illustration. The 9.5 moment 
magnitude earthquake in Valdivia, Chile of 1960, is 
still the biggest ever recorded, involved roughly 20 m 
dislocation in a subduction zone of ca. 1000 km long and 
roughly 100 km deep within ca. 1000 s. This means that 
the propagation of a seismic reaction front with up to ca. 
1 km/s horizontally and 100 m/s vertically which came to 
an end farther off. In our fractional image a seismic chain 
reaction started somewhere near the surface and propagated 
with fractional speeds (in the sense of (8)) of the indicated 
order of magnitude. This represents a fractal reality, i.e. the 
extension of the critical zone and its propagation are rather 
fuzzy. The mechanism may be called a seismic soliton, in 
Mandelbrot’s (1999) terms it means a transition from mild 
to wild roughness. The propagation could principally be 
recorded by suitably placed seismometers, and simulated 
by means of coupled fractional balances. Opaqueness and 
multifractality of the lithosphere delimit validations, but at 
least observed Lévy-spectra support our approach.
 
Data from other earthquakes could enable a sort of 
calibration, but this would be premature as our model 
should first be extended for further degrees of freedom 
(indicated above) and for thermal activation (next section).  
The Gutenberg-Richter rule confirms the Lévy-stability for 
any kind of superposition. The usual localization of active 
faults by means of P-waves (Hyndman and Hyndman 2009) 
could be improved by means of the actual fractality. Other 
than Burridge-Knopoff models (Cartwright et al. 1997), 
which are tectonically and tribologically over-simplified, 
our source mechanism is energetically sound and engulfs 
the real fractality. We concede that the real multifractality, 
which prevails due to earlier critical phenomena and arises 
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again at critical points, is not yet properly captured. The 
narrow range ca. 0.9 < α < 1, however, would require 
only a minor correction of balances. What counts more 
is the strong variation of cutoffs and minerals; both could 
principally be taken into account, but the lack of data will 
always require hypothetic completions.

A recent work by Silva Bustos (2008) may serve for 
illustration. A cross section with seismic sources indicates 
that a subduction is a fractal fault system so that its 
extension cannot be precisely determined (Figure 8). The 
depicted sources were localized from arrivals of waves in 
several earthquakes, but many minor sources cannot yet 
be localized. Thus the fractality of the subduction zone is 
but roughly represented. It appears that seismic solitons 
were stuck after running from the outcrop ca. 200 km 
downwards. It will be difficult to localize moving seismic 
sources because of the fractal indeterminacy.

Figure 8: Cross section of Chile in the latitude 33°S with 
subduction and seismic sources (Silva Bustos 2008)

A log-log-plot of number N versus magnitude Ms of 
seismic events shown in Figure 9, confirms the Gutenberg-
Richter rule. It suits to the reproduction of Lévy-spectra by 
weighted additions as the seismic energy Es follows logEs 

≈ Ms+4.8 empirically (Hyndman and Hyndman 2009). In 
other words, Gutenberg-Richter plots are a consequence 
of balaces with fractality and energetics at critical points 
(Gorenflo et al. 2012). The different slopes indicate a 
slight variation of fractality in our sense. This is not strictly 
valid as the usual determination of Ms and Es is metrically 
imprecise with fractality, but could be improved by means 
of the fractional calculus. As indicated further above this 

argument holds also true with new ruptures which require 
a Griffith-type and not a Coulomb-type verge of convexity.

Figure 9: Seismicity of Chile in a Gutenberg-Richter plot (Silva 
Bustos 2008)

The lithosphere dynamics implies further critical 
phenomena than just seismic chain reactions. One is the 
original freezing and cracking, a second one is presumably 
related with the Moho discontinuity. Slow tectonics with 
formation and modification of faults is more complex if it 
is accompanied by earthquakes, and is multifractal anyway. 
Outbursts of pore fluid and gas mean cold volcanism, A.v. 
Humboldt noticed already its relation with faults. Bigger 
magmatic chain reactions (µϵιγµα= mixture) occur at hot 
spots of colliding plates, causing volcanoes and craters. 
Erosion and sedimentation imply critical phenomena with 
fluids. Man-made earthquakes occur if injections produce 
propagating critical zones which are delayed by diffusion, 
and similar effects occur after strong earthquakes (next 
section). A delicate issue is of course how recurrence times 
of natural earthquakes can thus increase.

The energetics at critical points means new territory in a 
physical and mathematical sense. The verge of convexity of 
the free energy is a general feature of the loss of stability, this 
holds from groups of molecules via conservative structures 
up to galaxies. An ensemble of molecules with Brownian 
motion exhibits then second-order phase transitions and 
arising fractality, this includes quantum effects (Binney 
1992). Granular zones or formations of fissured rock are 
already fractal and become multifractal at critical points. 
The spontaneous growth of previously inactive degrees of 
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freedom, typically related to shear banding or cracking, 
requires extensions of the fractional approach (indicated 
above). Balances of fractionally extensive quantities 
require fractionally extended differentials, this implies 
generalized seismic and thermal entropy productions. 
The quantum seismodynamics at critical points cannot 
be captured with (12) as for stability. It appears that two 
coupled fractional Schrödinger equations are needed as 
in quantum electrodynamics (Gudehus and Touplikiotis 
2012).

Seismic and thermal activations
Deforming slowly, i.e. below ca. 10−3/s, a cube of jammed 
rock fractions implies microseismic bursts with heat flashes. 
Thermography of dry sand samples revealed T jumps at 
grain contacts beyond 1300°K within milliseconds (Luong 
1982). Except for rapid deformation the heat is rapidly 
diffused after seismic flashes so that an increase of T can 
hardly be observed. This holds also true for rock fractions 
in laboratory tests except for so high pressures p that the 
diffusion of heat takes more time than its generation. The 
molecules at seismogeneus particle contacts are dislocated 
when past each other with higher rates by simultaneously 
higher T. The seismic activation is thus partly thermal due 
to T-rises within very short times (compared with encounter 
times) at minute mass fractions of the solid skeleton.

Seismic bursts in fractal fault zones can produce less 
localized T-jumps with overall deformation rates of 
around 10−3 %/s as thermal diffusion times can exceed 
heat production times. T-rises within active fault zones can 
thus engulf more than a minute fraction of all molecules.  
This can lead to softening and melting, but hardly to run-
away instability (Vardoulakis 2002) and reactions (Hatzo 
et al. 2009). This type of co-seismic thermal activation is 
confined to temporarily seismogeneous zones, which are 
fractally distributed and exist only for short times in passing 
seismic reaction fronts (as seen in the previous section). 
More confined seismic bursts during subordinations 
cannot produce T-rises as encounter times of rock fractions 
exceed by far thermal diffusion times. Thus heat flashes 
due to seismic bursts characterize also lithosphere sections 
in a coarse-grained view.

Thermally activated dislocations with constant T occur 

with rates which are proportional to exp(-Ea/kBT)  where kB 
is the Boltzmann constant. Dislocation units in aggregates 
of jammed rock fractions have activation energies Ea 
from about 0.5 eV for soft to 5 eV for hard minerals at 
T ≈ 270°K with 40kBT ≈ 1 eV. Their thermal activation 
causes moderate or low rate-dependence or relaxation and/
or moderate or very slow creep. Thus lithosphere sections 
are more slowly jammed by tectonic deformations, 
without these jammed zones relax and pore systems close 
gradually. Critical points are therefore later or not attained 
with sufficiently slow or interrupted tectonic base shift. 
This thermal effect is evidently more marked with higher 
T and lower Ea.

Pore fluids have Ea < kBT, adsorbates of them have 
Ea<10kBT. After squeezing or injecting pore fluid this 
diffuses towards equilibrium, before the solid partial 
pressure ps= p−pf is temporarily lower due to a higher 
fluid pressure pf (principle of effective stress). As the solid 
shear stress τ is thus not changed the solid skeleton can 
attain critical states so that the seismicity rises. Man-made 
earthquakes could thus increase the recurrence times of 
natural ones. Calculations require additional fractional 
balance equations for the pore fluid, coupled with the 
solid balances and with isofractality due to the fractal pore 
system and the seismicity. Again the roughness may be 
eliminated in the stable range by fractional stretching, but 
no more at critical points.

The interplay of thermal and seismic activations could 
approximately be followed up by separating mildly rough 
and rather aseismic slow periods from short seismic 
episodes with wild roughness. The latter are hardly 
influenced by thermal activation with uniform T as seismic 
solitons pass by within short times. There is no diffusion of 
pore fluid during such episodes, but certainly in rest periods 
thereafter. Fractally distributed seismic bursts produce 
flash-like T -jumps, rapid dislocations can heat mylonite 
bands in faults so that reactions are enhanced. Other than 
assumed by some authors (Vardoulakis 2002; Hatzo et al. 
2009), however, such reactions occur in jerks and can at 
best enhance the seismogenesis like fluid injections. The 
spontaneous generation of kinetic energy occurs again at 
critical points of the free energy, now including chemical 
potentials with capillary effects. The Lévy-type seismicity 
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can only arise from fractality. This holds also true for 
the seismogenesis deeply below the lithosphere with 
spontaneous phase transitions in shear bands.

The solid-fluid interaction is the most important type of 
interplay of seismic and thermal activations. Except for 
methane cushions the fractal pore system is filled with 
almost incompressible water and dissolved minerals. 
This fluid experiences fractional diffusion (Gudehus and 
Touplikiotis 2012) with seepage and dwindling porosity 
in aseismic periods, then solubles can also condensate. 
Seismic episodes in critical zones are far shorter so that 
simultaneous diffusion and condensation are negligible. 
Then the pore pressure pw is higher or lower than the 
previous hydrostatic one as the porosity tends to decrease 
or increase, respectively (Gudehus 2011). The tendency for 
contractancy or dilatancy depends on the porosity, and on 
the ratio of mean solid pressure ps and hardness hs. Similar 
changes of pw and ps are produced by injection or depletion 
of pore water.

The diffusion of pore water from a zone with seismogenesis 
by pumping in water causes a spreading of the zone with 
higher than hydrostatic pw. As the total pressure p=ps+ pw 
and the deviatoric stress τ remain rather constant critical 
zones can arise in the neighbourhood if pw rises. This leads 
to delayed natural aftershocks or man-made earthquakes. 
It may suffice to estimate diffusion and related stress 
redistribution in the stable range without roughness, as 
this is mild and can be formally removed by a fractional 
stretching of spacetime, but this is no more legitimate 
at critical points. There is no way around the fractional 
calculus in case of seismogenesis, particularly with solid-
fluid coupling.

Conclusions
We conclude in particular that lithosphere sections have 
a fractal system of pores and internal forces. Balances 
of classically extensive properties require fractional 
integrals or fractional differential equations. Attenuation 
and subordination in the stable range imply Lévy-type 
seismicity can be captured with fractional calculus, but 
balances without this mild roughness may often suffice.

The loss of stability and seismogeneous chain reactions 

can only be captured with the fractional calculus and wild 
roughness arises alongside from multifractality. Seismic 
bursts imply heat flashes which can cause local softening 
and reactions in short episodes, whereas thermal activation 
causes slow relaxation and creep so that tectonic jamming 
is reduced. The water pressure in the pores rises in seismic 
episodes, this rise spreads by diffusion and can cause 
aftershocks, this can occur similarly after pumping in 
water.

The agenda for further research comprehends in particular, 
inherent and changing multifractality, fault systems with 
gradients and multifractality, Griffith-Rice fracture with 
fractality, coupling of solid and fluid with seismic and 
thermal activation, analytical bounds and numerical 
simulations and monitoring and control in situ.
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