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The spatio-temporal mechanical fractality of the lithosphere
can be represented by means of Lévy-statistics and fractional
calculus. This novel concept is outlined with geometrical and
energetic arguments. The fractality originates from the pore
system and appears in displacements, stresses and seismicity.
It is shown that the roughness may be neglected for the stable
range, but not for critical phenomena at the verge of energetic
convexity. The outline leads from rough coastlines via sand
samples to tectonic chain reactions. Equations and theorems are
physically interpreted without algebra and proofs.
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La fractalidad mecanica espacio-temporal de la litosfera puede
ser representada por medio de la estadistica de Lévy y calculo
fraccional. Este nuevo concepto es planteado con argumentos
geométricos y energéticos. La fractalidad se origina del sistema
poroso y aparece en desplazamientos, tensiones y sismicidad. Se
muestra que la rugosidad podria no ser considerada en el rango
estable, pero esto no es posible en fenomenos criticos al borde
de convexidad energética. Este planteamiento cubre bordes
costeros rugosos, muestras de arena y reacciones tectonicas en
cadena. Ecuaciones y teoremas son interpretados fisicamente
sin la necesidad de algebra ni pruebas.
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Introduction

The external fractality of the lithosphere was discovered by
Mandelbrot (1982). Rough coastlines can be reproduced in
hatched magnifications of sections. The log-log plot of the
minimum number N of squares needed to pave a coastline
(Figure la) with squares versus their size d is a straight
line as shown in Figure 1b. This means N = N, (d, /d)’ with
reference values N, , d, and a fractal dimension 1 <y <
2. The self-similarity holds within bounds or cutoffs d,,,
and d,,,.. The coastline length is thus / = N, d, (d, /d)". The
rough surface of a landscape can exhibit a similar fractality
(Figure 2a). The minimum number N of cubes of size d
needed to enclose the surface is N = N, (d, /d)” if plane
cross sections exhibit y as above. The area is thus 4 = N,
d’ (d,/d)*"V. Length and area are no more extensive as
without roughness, i.e. for y = 1.

A rough line or surface is called monofractal if its y is the
same everywhere, otherwise multifractal. This concept
works likewise for time-dependent evolutions observed at
the surface of the lithosphere, e.g. seismograms of points
or hydrograms of rivers. Mandelbrot (1999) uses the rather

poetic expression mild and wild roughness in case of mono
or multifractality, respectively. These notions may be taken
over to spatially and temporally fractal distributions of
displacements and forces, i.e. to mechanics with roughness.
This requires an objective definition of gradients and
time rates although rough distributions versus site x; and
time ¢ have no unique tangents. Corresponding objective
integrals over x; and ¢ are needed for balances of classically
extensive quantities, viz. mass, energy and momentum or
parts of them.

Mandelbrot knew of course that landscapes are shaped by
tectonics, erosion and sedimentation, but his algorithms
produce at best look-alikes with roughness and do
not represent mechanisms. He attributed multifractals
to ‘multiplicative cascades’, but this again is mere
mathematics and not yet physics. Humid sand surfaces, e.g.
in a box or at the beach (Figure 2b), can exhibit fractality,
and may substitute theoretical physical models with
roughness. Scaling up model test results to bigger sizes
and longer times requires a dimensional backbone from




Gudehus, G. (2012). Obras y Proyectos 11, 48-60

physical theories. This is not supplied by the classical rules
of similarity in case of fractality.
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Figure 1: a) Boxes of size d covering a coastline (Attica, Greece)
and b) number of boxes versus reciprocal value of their size
(qualitative)

The internal fractality of lithosphere sections - or of small-
scale substitutes - is not as thoroughly visible as the external
one, boreholes and sensors give at best fragmentary hints.
Natural pore systems (wopog = passage) appear to be
fractal. Their monofractality can be explained by means
of rather fictitious data (see in the next section). Systems
of tectonic faults, which are more porous than their
vicinity, exhibit self-similarity in hatched sections. This
kind of fractality is likewise observed in model tests and
hypoplastic simulations as shown in Figure 3 (Gudehus
2011). The non-uniformity of groundwater flow points also
to fractal pore systems (the permeability is proportional to
the square of the pore size). It appears that the complete
lithosphere, i.e. from its free surface down to the Moho
discontinuity, has a fractal pore system, of course with
lower pore fractions for higher pressures and temperatures.

Spatial distributions of internal pressures and stresses
exhibit likewise fractality. This force-roughness plays
already a role for soil samples, when one tries to capture it
by hidden variables like back stress or intergranular strain

(Gudehus 2011).

Figure 2: Fractal sand structures of ca. 0.3 m height at the beach,
a) mountain ridge (photo R. Gudehus) and b) cliff (photo M.
Poblete)

Figure 3: a), b) Patterns of shear bands in a model setup and c),

d) in two steps of a simulation (Gudehus 2011)

Such approaches are not explicitly fractal, but tacitly
scale-independent within reasonable bounds. The force-
roughness is known from model tests and building sites
with sand, it causes an indeterminacy of structural forces in
or at the ground. It is more marked for rocks so that stresses
at samples or structures in situ can hardly be determined.
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The world stress map of the lithosphere exhibits spatial
fluctuations with wavelenghts from ca. 1 km to 1000 km
(Heidbach et al. 2010). Stresses in the lithosphere are
estimated by means of borehole measurements and plate
tectonics. Several decades of fluctuation lengths suggest
fractality, certainly multifractality in connection with
which convection cycles of the asthenosphere impose
some order to the lithosphere.

The force-roughness can be frozen for a while in stable
sections of the lithosphere (what that means will be
explained later on). Changes at boundaries - from above,
below or aside - lead to changes of position and state of
lithosphere sections or its small substitutes. Apart from
smooth and rather slow changes due to thermal activation,
such changes are jerky and accompanied by seismicity.
The sound-roughness is audible as crackling of soil and
rock samples, and more dramatically with breaking
structures at or in the ground. Earthquakes exhibit similar
emissions with lower frequencies due to bigger extensions.
The spectra are often simplified as 1/f noise, this notion
is also used by Mandelbrot (1999) if the slope in a log-
log spectrum diverges from -1 and indicates fractality.
One may understand force-roughness as latent sound-
roughness, and would like to know when and how the
latter arises.

The dynamics of the lithosphere is evidently multifractal
and so complex that at best sections or substitutes of
them can be captured by mechanical models. Initial
states are inevitably partly subjective, and an additional
indeterminacy arises from arbitrary boundaries separating
near-fields from far-fields (Gudehus 2011). The interplay
of thermal and seismic activations depends on space
and time scales and it should not be separated from the
fractality. Gain and loss of stability is evidently a key
issue, but the treatment of it with fractality poses open
questions. Critical phenomena with pattern formation and
chaos for geo-matter were first considered with minute
sand avalanches (Bak et al. 1987). Similar attempts were
made with fractals in structural geology (Turcotte 1997)
and rock mechanics (Xie 1993).

Recently, Gudehus and Touplikiotis (2012) proposed a
more comprehensive approach by means of the fractional

calculus, and a more mathematical paper on fractional
stability is underway (Gorenflo et al. 2012). The present
paper is less mathematical, however, it employs further
physical arguments. First, the transition from fractal and
Lévy-type distributions to fractional balances is outlined
with the focus on geo-matter. Second, attenuation and
subordination are introduced for fractionally uniform
zones and indicated beyond. Third, the quasi-local loss
of stability and then with chain reactions of increasing
size are presented. Fourth, the interplay of seismic and
thermal interactions is touched. Finally, conclusions with
summary and outlook complete this more qualitative than
quantitative paper.

From fractals to fractional balances

Consider the fractal pore system of an idealized layer
as shown in Figure 4. Straight lines cut solid and void
fractions in such a way that hatched magnifications exhibit
a similar rough sequence (Figure 4a). The solid mass m in
a cube of size d yields a straight log-log plot (Figure 4b)
with reference values m, , d. and a fractal dimension ca.
0.9 < <1 instead of f = 1 without roughness. This holds
within cutoffs d,,;, near a rock fraction size and d,,,. below
the layer thickness 4. The solid fraction is thus n=n,(@d )
for lines, n, = n, (d/d,)**" for areas and n,= n, (d/d )** "V
for volumes, whereas n,= n, holds in the classical approach
(f = 1) by Monge (Guyon and Troadec 1994).

A log-log histogram of numbers N, of pores with size d,
yields a straight line section with slope —3p, Figure 4c.
This corresponds to the major part of a skew stable Lévy-
distribution (Sato 1999). More precisely speaking, such
a probability distribution comes close to a power-law
in the falling branch. It is called stable since any sum of
independent random values with such a distribution has
the same kind of distribution. This uncommon central
limit theorem holds strictly without cutoffs, but then
mean values and higher moments diverge. There is no
divergence with cutoffs, and random sums tend again
to such distributions except for extremely big numbers
(Mantegna and Stanley 1994). Such distributions can arise
from successive fragmentation or agglomeration, e.g. sizes
of grown-up animals from microbes to giants in habitats
can exhibit them.
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Figure 4: a) Layer with fractal pore system, b) solid mass of
cubes, ¢) number of pores versus size, d) prism in the layer and
e) vertical stress by weight versus depth

Vertical pressures by weight in fractally porous layers can
be calculated by adding up the solid volumes of cubes,
multiplying by specific gravity gp, and dividing by the
base area. Figure 4d shows that a prism of height # and
cross section b” has thus

B o \P h\?
g = stnrbj (d,,,) (dr-)

The pressure o for a given depth decreases with increasing
b, whereas without roughness (6 =1), o0 = gpnh, i.e. o is
independent of b. The fractality (f < 1) requires a reference
length d,. and holds within cutoffs. Transition from addition
of cubes to integration leads to the fractional integral

e

3
1
A= —— [ (€ —x)"pdx @)
L'(B) Df

with A = o/(p, n. d, ), £ = x/d, and u = 1. Applying (2) for
x= x, from O to 4, and again for x = x, = x; from 0 to b,
leads to (1).

More generally speaking, the Riemann integral over a fractal
distribution is equivalent to a fractional integral (Ren et al.
2003). The latter is a generalization of Cauchy’s formula
for multiple integrals to repeated integration of fractional
degree o (Gorenflo and Mainardi 2000). It requires the
Gamma function I'" and dimensionless variables, e.g. by
means of a reference length d,. With fractal uniformity (1)

and (2) indicate that the weight is no more extensive as
without roughness (cf. length and area in the Introduction).
We call quantities fractionally extensive which would be
extensive (in Rankine’s sense) without spatial roughness,
but they have to be expressed by fractional integrals with
it. Cutoffs can be applied using expression (2) as well as
(1) by keeping b within d,,;, and d,,,. < h.

The inversion of (2) reads d’A/d&# = u with a fractional
derivative. This may be understood as a weighted average
of secants for different section lengths, or as an objective
gradient of a fractal distribution by means of the Gamma
function and a reference length for normalization. This
gradient is no more local in the classical continuum sense,
but refers to a point in the fractional image of roughness. In
the case considered here the fractal distribution represents
the internal force-roughness by weight (Figure 4e). More
precisely D, A with a specified operator D, can be written
instead of d*A/d{* |, this is needed for algebraic operations
(Gorenflo and Mainardi 2000).

Turning to temporal fractality, we consider now a fractally
uniform cubical range of jammed rock fractions. The latter
may be grains or more densely packed pieces of rock. They
constitute a perfect sample without deviations from fractal
uniformity along the boundaries. We consider evolutions
of spatial averages with time ¢, keeping in mind that
spatial distributions are fractal so that classically extensive
quantities are fractionally extensive as outlined above for
weight. Imagine non-disturbing sensors which indicate
seismicity, stress and shape of our cube. Figure 5 shows
idealized plots of microseismic bursts and simultaneous
sudden changes of stress and shape. This may be concluded
from triaxial tests with dry hard-grained samples, confined
by a membrane under constant pressure (Gudehus and
Touplikiotis 2012). Slow axial loading causes audible
microseismic bursts, and almost simultaneous changes
of overall state and shape as long as the travel times of
microseismic waves within our cube are much shorter than
the intervals between seismic bursts.

Cube-averaged extensive properties X, in particular
seismic energy, boundary forces (expressed by stress
components) and lengths (changing by deformation)
exhibit the same temporal fractality. Although the temporal
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Figure 5: Schematic fractal evolution of averages of a cubical
zone of jammed grains, a) seismicity, b) stress and c) shape

fluctuations have different intensities box-counting as in
Figure 1, would thus yield the same fractal dimension.
This justifies fractional balance equations

d*( X,/ Xir)

d(t/tr) ©

= —kiXi/Xir +

with reference quantities X;. and ¢, , a loss factor x; and
an input u; X; dwindles with constant x; and w; = 0,
monotonously for 0 < a < 1 and with oscillations for 1 < a
< 2. For a constant ¢ and ca. 0.8 < a < 1 our X; /X, tends
to u. For harmonic u(#/t. ) the term X/X,. becomes periodic
(harmonic for « = 1 or 2). Comparing such asymptotic
solutions with observed attractors can serve to estimate
a, x; and u; (Gudehus and Touplikiotis 2012). Expression
(3) works only for increasing ¢, this may be attributed to
causality for dissipative evolutions.

Balance equations like (3) are coupled by means of X-
dependent x; and y,. In an economic sense they express that
the capital of market partners varies fractally with time by
capital-dependent loss, and by input or output among each
other and with the surroundings. For our idealized cube of
jammed rock fractions coupled balances refer to shape and
energies (elastic, seismic and thermal). This will be partly
outlined later on and balances of extensive quantities will
already be treated in the sequel. Coupled balances like (3)
can be transformed to classical, i.e. non-fractional ones
by means of fractional time stretching. This means that

t is transformed so that fractional integrals change into
ordinary ones, and it is justified for the stable range with
ca. 09 <a<1.

Spatio-temporal balances of fractionally extensive

quantities X; can in simple cases be written as

0*(Xo/Xir) _ 0P(Xi/Xur)
At/tr)> " A(xy/dy)P

+ i (4)

with reference quantities X, ¢, d,, and fractalities a, f as
outlined further above and summation over j for fractional
gradients. Expression (4) represents a balance for a section
of space-time with fractal distribution. The loss term
with x; does not need to be proportional to the fractional
gradient of X; as written for simplicity in (4). In addition to
shape and energies as for fractally uniform cubes, balanced
quantities are mass and momentum, both are conserved for
sums of constituents.

We assume isofractality, i.e. a = f. This is justified by the
same narrow range of o and f and by the spatio-temporal
coupling via microseismic elastic waves. The latter
suggests d, /t. = ¢, with the velocity of elastic shear waves
¢, for isotropic states. With higher void ratios and lower
pressures o decreases, which depends also on mineral and
temperature. Apart from this moderate multifractality (see
more in subsequent sections) one can transform (4) into
non-fractional balances by means of a fractional space-
time stretching (Gudehus and Touplikiotis 2012). This is
justified for the stable regime with the narrow range of a.

Attenuation and subordination
As proposed by Gudehus (2010) for sand, we assume the

specific elastic energy
bO?
A2

for jammed grains or rock fractions. Therein A and
® denote invariant volumetric and deviatoric elastic
deformations. The solid hardness /, and the exponent v =3
depend on mineral and particle shape, the factors a and
b depend on the porosity. Mean pressure and root mean
square shear stress are energy- conjugated via p = ow,/0A

we = ahg A (1 + (5)
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and 7 = ow,/00. These first and second invariants can be
related with components ¢; and €j, third invariants could
also be taken into account.

Small deviations of stress and elastic strain from an
equilibrium are captured by the hypoelastic relation
92w,

00 = ——— €l
4 66%(96% kl

(6)
with summation in k/. Using invariants this linearization
implies the quadratic form

2 2 2
0% w, “w, 0w,

oA (6A)? + 258560000 + oos (60)2

§w, = (7
which describes second-order changes of w, for small
variations of A and ®. Equilibrium states, i.e. dw,=0 with
o’w, > 0, are stable as any deviation requires additional
energy. Then &°w, > 0 holds also with components, i.e.
oo;0€;> 0 with summation in ij.

We consider now a fractally uniform zone with Aypoelastic
deviations from a stable equilibrium. Fractal uniformity
means that stress o; and elastic strain €; at equilibrium
have no fractional gradients. Both have the same fractality
due to o, = Ow, /Ocf. With isofractality as presented in the
previous section, a small deviation of position u, implies a
velocity

v 0%(ui/dy)

Cg a(t/ t'r)a

(8)

and the deformation

0%(ui/dy)
O(xj/dy)"

0% (u, /dy)

.= (0.5
(i /dr)*

)

These are fractional representations of fractal distributions
with dimensionless quantities for metric correctness.

The balance of momentum reads

nppsdr 0%(vifcs) 0% (d0ij/hs)
he  O(t/t)e a(:.cj/ff,,,)a (10)

with normalization as further above and summation in ;.
It expresses the conservation of momentum with fractality
as by (4) without input as small deviations do not change

the weight. Insertion of (6), (8) and (9) into (10) yields the
fractional wave equation

nypsdy 02 (u;/d,.) B 92 (we/hs)

he  O(t/t,)2

0% (uj/dr)  (11)
Oes;0ey O(uk/dr)*0(w/dy)™

with summation in j and k. Without roughness, i.e. o = 1,
and with w,= aA’? + b@?, (11) is reduced to the classical
wave equation for isotropic linear elasticity. With o = 1,
w, by (5) and v = 2.5, expression (11) was analyzed by
means of the classical ansatz u; x exp(w? + kx; ), leading to
realistic stress- and porosity-dependent wave velocities of
granular samples in the stable range (Mayer and Liu 2010).

The vectorial fractional differential equation (11) is not
given in the literature. Only scalar special versions, which
can be derived by confining to isotropic states (Gudehus
and Touplikiotis 2012), have been solved for certain initial
and boundary conditions (Mainardi and Tomoirotti 1997).
They reveal a hysteretic damping for the hypoelastic range
which would be missed by spatio-temporal stretching so
that (11) is simplified with a = 1 to the version of Mayer
and Liu (2010). A novel solution of (11) was obtained with
simultaneous Laplace and Fourier transformations and
Green functions (Gorenflo et al. 2012). Other than without
roughness, whereby a classical ansatz leads to an eigenvalue
problem as mentioned above, a fractional eigenvalue
problem is only obtained with integral transformations. For
the stable range all eigenvalues are real so that propagations
can occur. However, due to the fractality elastic waves are
no more sinusoidal and dissipation occurs since any wave
generates smaller irregular ones. Extended exponential
functions, which were proposed by Mittag-Leffler 100
years ago, provide an orthogonal base.

Without fractality hypoelastic oscillations would last
forever and could be decomposed into harmonics or
eigenmodes. There are no harmonics with fractality, but
with stability the wave equation dictates a characteristic
autogencous dwindling after an initial disturbance. It
can be proven (Gorenflo ef al. 2012) that the power-law
spectrum of an initial seismicity experiences a downward
and rightward shift in the log-log plot (Figure 6). The
amplitudes fade with ¢ by power-laws as all wave fractions
induce erratic oscillations with higher frequencies due to
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the fractal pore system. This kind of attenuation works as an
autogeneous attractor for different initial seismicities and
is characteristic of stable states with fractality. This works
already for the hypoelastic range and without gradients.
With them the attenuation is enhanced by radiation. With
dissipative dislocations the attenuation after an initial small
disturbance is faster than hypoelastic and leaves back a
small change of position and state, whereas it would not
cause any trace without roughness.
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Figure 6: Initial seismic spectrum and shift (arrow) by attenuation

in the stable range

A cubical fractally uniform zone of jammed grains may
now be deformed monotonously from a stable state of rest.
After a hypoelastic onset microseismicity arises with an
intensity 7, which may be named seismocrasy (Gudehus
2010). This name corresponds to the Greek ‘thermocrasy’
for temperature and is more suitable than ‘granular
temperature’. As without roughness the specific seismic
energy isw, x 77 forassuringthe stability of seismodynamic
equilibria without elastic strain (Gudehus et al. 2010). For
T, > 0 the elastic stress o= ow, /0 €; deviates from the
Cauchy stress o; = (1 — a, )o§ with a T,-dependent factor
0 < a, < 0.8 as the grain contacts are jiggling. The elastic
strain is augmented by overall stretching and reduced by
seismically activated relaxation.

Better than with the classical calculus, the balance
equations can be written as in (3) for temporal fractality
(Gudehus and Touplikiotis 2012). They are coupled via 7
and state that

- the seismic energy rises by average relative velocities of
grains and dwindles by transition into heat,

- the elastic energy rises by changes of shape and dwindles
by seismic relaxation.

Monotonous deformations with fractional rate D lead to
T,xD and to fractionally hypoplastic changes of o;. This
subordination, which is characterized by a monotonous
exogeneos attractor (Gudehus 2010), works in the stable
range. It can be reduced for non-fractional hypoplastic
(Gudehus
and Touplikiotis 2012). Subordination implies rate-
independence.

relations by fractional time-stretching

One may argue that the additional effort of using the
fractional calculus is not worth it if it turns out that it is
not needed. Well, not really, because the mechanical
roughness is real and should not just be ignored. With the
above argument the success of non-fractional models is
further justified in spite of fractality for the stable range
(but not otherwise, see next section). The argument works
also for evolutions with pulsating seismicity in the stable
range, i.e. for subordinations which imply pulsations of
T,. The behavior is then intermittently hypoelastic and
hypoplastic with likewise rate-independent transitions.
This kind of subordination is characterized by cyclic
exogeneous attractors (Gudehus 2011). Fractional time-
stretching leads to non-fractional equations which produce
realistic attractors (Gudehus et al. 2010). This means that
hidden variables like back stress or intergranular strain
for the internal force-roughness are not needed in energy-
based models in spite of the actual fractality. This helps in
particular for cumulative effects (Gudehus 2010) and for
rather fractal driven variations of 7.

A kind of quantum seismodynamics is desirable for
explaining the microseismicity during subordinations of
cubical zones of jammed grains. The acoustic emission
indicates seismons, i.e. seismic monads (Gudehus 2010),
with a truncated power-law spectrum. These can be attributed
to successive bursts of fractally distributed groups of grains
which are jammed up to the stability limit. In the stable
range seismons have randomly distributed polarizations, but
other than with phonons for thermal oscillations the seismic
energy is not conserved and not Gauss-like partitioned. The
fractional Schrodinger equation

a*v _ —2m e} +V($i)allf
O(t/tr)™  nrped} O(wi/dr)*O(zi/dr) dy

(12)

imo
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yields the probability density WYW* of seismons with mass
m and potential V. Like its precursor for particles (Laskin
2000), expression (12) yields truncated Lévy-spectra by
means of Laplace and Fourier transformations. This suits
to the stability of Lévy-distributions and the truncated
fractality of microseismic bursts. The original Schrodinger
equation, i.e. (12) with o = 1, yields much richer discrete
spectra. The matter becomes more intricate with critical
phenomena (next section).

Subordination in the large can occur in lithosphere
sections, or in small substitutes at beaches or building
sites or in model setups. It requires stability and excludes
thermal activation (see last section). Coupled fractional
balance equations such as (4) may then be reduced to non-
fractional ones by fractional space-time stretching (as in
previous section). This can suffice for the mild subcritical
roughness with ca. 0.9 <a <1 for suitably chosen regions.
Relics of former critical phenomena (next section) cause
an inevitable indeterminacy which is linked with rather
vague notions such as fabric and inherent anisotropy. The
indeterminacy can be reduced sometimes by means of
attractors in the large (Gudehus 2011), which constitute a
subordination in suitable soil regions.

The issue is more complex with rock and with bigger
sections of the lithosphere. The mechanical roughness is
apparently wilder for building sites and mines, this can
be attributed to spatially variable cutoffs from previous
critical phenomena and implies more indeterminacy than
with soil. Fault patterns in the lithosphere are evidently
multifractal and can lead to further critical phenomena (next
section). Cases of coarse-graining may still correspond
to subordination of the earth crust by magma convection
below, but even in those cases seismic features of interest
can at best be crudely estimated.

Loss of stability and chain reactions

Consider a fault system with a fractionally uniform zone
at the verge of energetic convexity as shown in Figure 7a.
This may represent a fractal fault zone with negligible
fractional gradients at the verge of stability. One may
imagine a zone in a fault system which is critical in a range
with much smaller size than its depth. This specification
is inevitably imprecise, an interpretation will be offered

further below. Fractional uniformity means in particular
that the stress tensor has the same alignment throughout
our zone. Criticality with the simplest reasonable specific
energy w, by (5) means that w, has a chair-point for the
Coulomb condition ©%/p? = 2b/(v — 2) (see Figure 7b). Then
an increasing part of the elastic energy becomes kinetic for
a one-sided section of elastic strain deviations.
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Figure 7: a) Critical zone of a fault system, b) elastic energy
surface with tangent plane at the verge of convexity and c)
spontaneous spectral shift of seismicity

The condition 8w, = 0 by (7) can be translated into
Cartesian stress and strain components. It means a linear
dependence of the hypoelastic compliances, ie. det
0’w,/0ei0e;, = 0. Thus the fractional wave equation (11)
degenerates as propagations are impossible for the sector
with &’w,< 0. Instead, one-sided waves in this sector
increase spontancously at the expense of w,. Combined
Laplace and Fourier transformation with Green functions
(Gorenflo et al. 2012) then produces a shift of an initial
truncated power-law spectrum to the left and upwards as
can be observed in Figure 7c. In other words, at a critical
point an initial seismicity grows by the same factors for
wave-length and -height throughout the wave package.

As for attenuations (previous section) the elastic strain
components change with such a ratio that the loss of w,
is maximal. With two invariants and w, by (5) this means
that the spontaneous deviation from a chair point follows
the steepest descent. This can be interpreted as maximal
rate of entropy production due to the positive feedback of




Gudehus, G. (2012). On the mild and wild mechanical roughness of the lithosphere. Obras y

Proyectos 11, 48-60

seismons (Gudehus 2010). The Lévy-spectrum exhibits a
slight rightwards rotation of the log-log plot, but this kind
of seismogenesis is still a stable Lévy-process. If the initial
weak seismicity is not Lévy-like it is there with the named
magnification so that one can speak of an autogeneous
strange attractor (Gudehus 2011; Gorenflo ef al. 2012).

The same spectral shift is also obtained with further degrees
of freedom. The simplest model has only two invariants
and two different stress components, one can incorporate a
third invariant and a less symmetric stress state. One could
extend the approach with polar quantities which arise
from shear banding, this implies gradients which will be
discussed below. One could also incorporate the extension
of cracks by means of surface integrals (Budiansky and
Rice 1973), and could include sorption energies for cracks
(Rice 1978). The path-independent integrals enable energy
balances for fractal crack systems, including critical points
in the energetic sense of Griffith (1921). Fractional critical
phenomena engulf thus the verge of energetic convexity
and fractal distributions. This was addressed already in
an overview paper on the mechanics of natural solids
(Gudehus 2009), therein convexity was called concavity
by considering an energy landscape from above, not from
below as in mathematics and theoretical physics.

This approach is apparently insufficient as critical zones
cannot exist with any extension due to their instability.
One should instead imagine seismic reaction fronts which
propagate to a certain extent. The front is fractal as with a
forest fire or with irregular dominoes standing on a table.
The reaction (e.g. burning or overturning) occurs in the
front with a rather fuzzy extension, it leaves back a stable
dead zone and propagates as long as a reaction in the zone
ahead is triggered by the propagation. A chain reaction in
a fractal fault zone propagates as long as the part ahead of
the front is nearly critical so that the stress redistribution
due to the collapse in the front leads to critical points
immediately ahead.

One may try to extend Hadamard’ s concept of propagating
discontinuities to fractional models of fractal evolutions
with reaction fronts, but this will be mathematically
difficult. Instead and less strictly, one can estimate the
rate of propagation via a gradient-delayed collapse. This

means that any critical zone has gradients of state towards
its non-critical vicinity which reduce the rate of extension
of seismic waves due to sidewards radiation (Gorenflo et
al. 2012). The rate of extension can be reduced to zero, then
the propagation is stuck. The upper cutoff bounds the rate
of extension, this is an estimate of the propagation velocity
of the seismic reaction front. This estimate is crude as it
stems from a fractional image of a fractal reality, since
gradients are fractional and can at best be estimated, as
well as fractional balances for a reaction front are partly
represented.

Consider real earthquakes for illustration. The 9.5 moment
magnitude earthquake in Valdivia, Chile of 1960, is
still the biggest ever recorded, involved roughly 20 m
dislocation in a subduction zone of ca. 1000 km long and
roughly 100 km deep within ca. 1000 s. This means that
the propagation of a seismic reaction front with up to ca.
1 km/s horizontally and 100 m/s vertically which came to
an end farther off. In our fractional image a seismic chain
reaction started somewhere near the surface and propagated
with fractional speeds (in the sense of (8)) of the indicated
order of magnitude. This represents a fractal reality, i.e. the
extension of the critical zone and its propagation are rather
fuzzy. The mechanism may be called a seismic soliton, in
Mandelbrot’s (1999) terms it means a transition from mild
to wild roughness. The propagation could principally be
recorded by suitably placed seismometers, and simulated
by means of coupled fractional balances. Opaqueness and
multifractality of the lithosphere delimit validations, but at
least observed Lévy-spectra support our approach.

Data from other earthquakes could enable a sort of
calibration, but this would be premature as our model
should first be extended for further degrees of freedom
(indicated above) and for thermal activation (next section).
The Gutenberg-Richter rule confirms the Lévy-stability for
any kind of superposition. The usual localization of active
faults by means of P-waves (Hyndman and Hyndman 2009)
could be improved by means of the actual fractality. Other
than Burridge-Knopoft models (Cartwright et al. 1997),
which are tectonically and tribologically over-simplified,
our source mechanism is energetically sound and engulfs
the real fractality. We concede that the real multifractality,
which prevails due to earlier critical phenomena and arises
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again at critical points, is not yet properly captured. The
narrow range ca. 0.9 < o < 1, however, would require
only a minor correction of balances. What counts more
is the strong variation of cutoffs and minerals; both could
principally be taken into account, but the lack of data will
always require hypothetic completions.

A recent work by Silva Bustos (2008) may serve for
illustration. A cross section with seismic sources indicates
that a subduction is a fractal fault system so that its
extension cannot be precisely determined (Figure 8). The
depicted sources were localized from arrivals of waves in
several earthquakes, but many minor sources cannot yet
be localized. Thus the fractality of the subduction zone is
but roughly represented. It appears that seismic solitons
were stuck after running from the outcrop ca. 200 km
downwards. It will be difficult to localize moving seismic
sources because of the fractal indeterminacy.
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Figure 8: Cross section of Chile in the latitude 33°S with
subduction and seismic sources (Silva Bustos 2008)

A log-log-plot of number N versus magnitude M, of
seismic events shown in Figure 9, confirms the Gutenberg-
Richter rule. It suits to the reproduction of Lévy-spectra by
weighted additions as the seismic energy E, follows logE,
~ M+4.8 empirically (Hyndman and Hyndman 2009). In
other words, Gutenberg-Richter plots are a consequence
of balaces with fractality and energetics at critical points
(Gorenflo et al. 2012). The different slopes indicate a
slight variation of fractality in our sense. This is not strictly
valid as the usual determination of M, and E| is metrically
imprecise with fractality, but could be improved by means
of the fractional calculus. As indicated further above this

argument holds also true with new ruptures which require
a Griffith-type and not a Coulomb-type verge of convexity.
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Figure 9: Seismicity of Chile in a Gutenberg-Richter plot (Silva
Bustos 2008)

The further
phenomena than just seismic chain reactions. One is the
original freezing and cracking, a second one is presumably

lithosphere dynamics implies critical

related with the Moho discontinuity. Slow tectonics with
formation and modification of faults is more complex if it
is accompanied by earthquakes, and is multifractal anyway.
Outbursts of pore fluid and gas mean cold volcanism, A.v.
Humboldt noticed already its relation with faults. Bigger
magmatic chain reactions (ueryua= mixture) occur at hot
spots of colliding plates, causing volcanoes and craters.
Erosion and sedimentation imply critical phenomena with
fluids. Man-made earthquakes occur if injections produce
propagating critical zones which are delayed by diffusion,
and similar effects occur after strong earthquakes (next
section). A delicate issue is of course how recurrence times
of natural earthquakes can thus increase.

The energetics at critical points means new territory in a
physical and mathematical sense. The verge of convexity of
the free energy is a general feature of the loss of stability, this
holds from groups of molecules via conservative structures
up to galaxies. An ensemble of molecules with Brownian
motion exhibits then second-order phase transitions and
arising fractality, this includes quantum effects (Binney
1992). Granular zones or formations of fissured rock are
already fractal and become multifractal at critical points.
The spontaneous growth of previously inactive degrees of
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freedom, typically related to shear banding or cracking,
requires extensions of the fractional approach (indicated
above). Balances of fractionally extensive quantities
require fractionally extended differentials, this implies
generalized seismic and thermal entropy productions.
The quantum seismodynamics at critical points cannot
be captured with (12) as for stability. It appears that two
coupled fractional Schrodinger equations are needed as
in quantum electrodynamics (Gudehus and Touplikiotis
2012).

Seismic and thermal activations

Deforming slowly, i.e. below ca. 107%/s, a cube of jammed
rock fractions implies microseismic bursts with seat flashes.
Thermography of dry sand samples revealed 7" jumps at
grain contacts beyond 1300°K within milliseconds (Luong
1982). Except for rapid deformation the heat is rapidly
diffused after seismic flashes so that an increase of 7 can
hardly be observed. This holds also true for rock fractions
in laboratory tests except for so high pressures p that the
diffusion of heat takes more time than its generation. The
molecules at seismogeneus particle contacts are dislocated
when past each other with higher rates by simultaneously
higher T. The seismic activation is thus partly thermal due
to T-rises within very short times (compared with encounter
times) at minute mass fractions of the solid skeleton.

Seismic bursts in fractal fault zones can produce less
localized T7-jumps with overall deformation rates of
around 107 %/s as thermal diffusion times can exceed
heat production times. 7-rises within active fault zones can
thus engulf more than a minute fraction of all molecules.
This can lead to softening and melting, but hardly to run-
away instability (Vardoulakis 2002) and reactions (Hatzo
et al. 2009). This type of co-seismic thermal activation is
confined to temporarily seismogeneous zones, which are
fractally distributed and exist only for short times in passing
seismic reaction fronts (as seen in the previous section).
More confined seismic bursts during subordinations
cannot produce 7-rises as encounter times of rock fractions
exceed by far thermal diffusion times. Thus heat flashes
due to seismic bursts characterize also lithosphere sections
in a coarse-grained view.

Thermally activated dislocations with constant 7" occur

with rates which are proportional to exp(-£,/k;T) where kg
is the Boltzmann constant. Dislocation units in aggregates
of jammed rock fractions have activation energies E,
from about 0.5 eV for soft to 5 eV for hard minerals at
T = 270°K with 40k;T = 1 eV. Their thermal activation
causes moderate or low rate-dependence or relaxation and/
or moderate or very slow creep. Thus lithosphere sections
are more slowly jammed by tectonic deformations,
without these jammed zones relax and pore systems close
gradually. Critical points are therefore later or not attained
with sufficiently slow or interrupted tectonic base shift.
This thermal effect is evidently more marked with higher
T and lower E,.

Pore fluids have E, < kT, adsorbates of them have
E<10kT. After squeezing or injecting pore fluid this
diffuses towards equilibrium, before the solid partial
pressure p,= p—p, is temporarily lower due to a higher
fluid pressure p, (principle of effective stress). As the solid
shear stress 1 is thus not changed the solid skeleton can
attain critical states so that the seismicity rises. Man-made
earthquakes could thus increase the recurrence times of
natural ones. Calculations require additional fractional
balance equations for the pore fluid, coupled with the
solid balances and with isofractality due to the fractal pore
system and the seismicity. Again the roughness may be
eliminated in the stable range by fractional stretching, but
no more at critical points.

The interplay of thermal and seismic activations could
approximately be followed up by separating mildly rough
and rather aseismic slow periods from short seismic
episodes with wild roughness. The latter are hardly
influenced by thermal activation with uniform 7 as seismic
solitons pass by within short times. There is no diffusion of
pore fluid during such episodes, but certainly in rest periods
thereafter. Fractally distributed seismic bursts produce
flash-like 7" -jumps, rapid dislocations can heat mylonite
bands in faults so that reactions are enhanced. Other than
assumed by some authors (Vardoulakis 2002; Hatzo et al.
2009), however, such reactions occur in jerks and can at
best enhance the seismogenesis like fluid injections. The
spontaneous generation of kinetic energy occurs again at
critical points of the free energy, now including chemical
potentials with capillary effects. The Lévy-type seismicity
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can only arise from fractality. This holds also true for
the seismogenesis deeply below the lithosphere with
spontaneous phase transitions in shear bands.

The solid-fluid interaction is the most important type of
interplay of seismic and thermal activations. Except for
methane cushions the fractal pore system is filled with
almost incompressible water and dissolved minerals.
This fluid experiences fractional diffusion (Gudehus and
Touplikiotis 2012) with seepage and dwindling porosity
in aseismic periods, then solubles can also condensate.
Seismic episodes in critical zones are far shorter so that
simultaneous diffusion and condensation are negligible.
Then the pore pressure p, is higher or lower than the
previous hydrostatic one as the porosity tends to decrease
or increase, respectively (Gudehus 2011). The tendency for
contractancy or dilatancy depends on the porosity, and on
the ratio of mean solid pressure p, and hardness 4,. Similar
changes of p,, and p, are produced by injection or depletion
of pore water.

The diffusion of pore water from a zone with seismogenesis
by pumping in water causes a spreading of the zone with
higher than hydrostatic p,,. As the total pressure p=p,+ p,,
and the deviatoric stress T remain rather constant critical
zones can arise in the neighbourhood if p, rises. This leads
to delayed natural aftershocks or man-made earthquakes.
It may suffice to estimate diffusion and related stress
redistribution in the stable range without roughness, as
this is mild and can be formally removed by a fractional
stretching of spacetime, but this is no more legitimate
at critical points. There is no way around the fractional
calculus in case of seismogenesis, particularly with solid-
fluid coupling.

Conclusions

We conclude in particular that lithosphere sections have
a fractal system of pores and internal forces. Balances
of classically extensive properties require fractional
integrals or fractional differential equations. Attenuation
and subordination in the stable range imply Lévy-type
seismicity can be captured with fractional calculus, but
balances without this mild roughness may often suffice.

The loss of stability and seismogeneous chain reactions

can only be captured with the fractional calculus and wild
roughness arises alongside from multifractality. Seismic
bursts imply heat flashes which can cause local softening
and reactions in short episodes, whereas thermal activation
causes slow relaxation and creep so that tectonic jamming
is reduced. The water pressure in the pores rises in seismic
episodes, this rise spreads by diffusion and can cause
aftershocks, this can occur similarly after pumping in
water.

The agenda for further research comprehends in particular,
inherent and changing multifractality, fault systems with
gradients and multifractality, Griffith-Rice fracture with
fractality, coupling of solid and fluid with seismic and
thermal activation, analytical bounds and numerical
simulations and monitoring and control in sifu.
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