
42

Diaz-Ramirez, J., Camacho, R., McAnally, W. and  Martin, J. (2012). Parameter uncertainty 
methods in evaluating a lumped hydrological model. Obras y Proyectos 12, 42-56	

Parameter uncertainty methods in evaluating a lumped hydrological model

Jairo Diaz-Ramirez, Rene Camacho, William McAnally and James 
Martin

Department of Civil and Environmental Engineering, Mississippi State University, 501 Hardy Road, 235 Walker Engineering 
Bldg., Box 9546, Mississippi 39762-9546, USA, jd216@cee.msstate.edu, rac333@cee.msstate.edu, mcanally@cee.msstate.edu,
jmartin@cee.msstate.edu

Método de incertidumbre paramétrica en la evaluación de un modelo hidrológico agregado 

Fecha de entrega: 8 de octubre 2012
Fecha de aceptación: 12 de diciembre 2012

Water resources modelers face the challenge of 
dealing with numerous uncertainties due to the 
lack of knowledge of the natural systems, numerical 
approaches used in modeling (equations, parameters, 
structures, solutions), and field data collected to set 
up and evaluate models. Propagation of parameter 
uncertainty into model results is a relevant topic 
in environmental hydrology. Uncertainty analyses 
improve assessment of hydrological modeling. There is 
a need in modern hydrology of developing and testing 
uncertainty analysis methods that support hydrological 
model evaluation. In this research the propagation of 
model parameter uncertainty into streamflow model 
results is evaluated. The Hydrological Simulation 
Program – FORTRAN (HSPF) supported by the US 
Environmental Protection Agency was evaluated using 
hydroenvironmental data from the Luxapallila Creek 
watershed located in Mississippi and Alabama, USA. 
The uncertainty bounds of model outputs were computed 
using the Monte Carlo simulation and Harr’s point 
estimation methods. Analysis of parameter uncertainty 
propagation on streamflow simulations from 12 HSPF 
parameters was accomplished using 5,000 Monte 
Carlo random samples and 24 Harr selected points for 
each selected parameter. The comparison showed that 
Harr’s method could be an appropriate initial indicator 
of parameter uncertainty propagation on streamflow 
simulations, particularly for hydrology models with 
several parameters.

Keywords: HSPF, parameter uncertainty, Monte 
Carlo simulation, Harr’s point estimation method, 
uncertainty bounds of streamflow simulations

Los modeladores de recursos hídricos enfrentan el desafío de 
trabajar con  diferentes tipos de incertidumbre debido a la 
falta de un completo conocimiento de los sistemas naturales, 
procesos de modelación, aproximaciones numéricas 
(ecuaciones, parámetros, estructuras, soluciones), y datos 
de terreno tomados para desarrollar y evaluar modelos. 
La propagación de la incertidumbre paramétrica en los 
resultados de las simulaciones es un tópico relevante en la 
hidrología ambiental. Los análisis de incertidumbre mejoran 
la evaluación en el modelamiento hidrológico. Existe una 
necesidad en la hidrología moderna de desarrollar y evaluar 
métodos de análisis de incertidumbre que apoyen la evaluación 
de los modelos hidrológicos. En esta  investigación se evaluó 
la propagación de la incertidumbre de los parámetros de un 
modelo en los resultados del flujo simulado. Un programa de 
simulación hidrológico HSPF patrocinado por la Agencia 
Ambiental de los EE.UU., fue evaluado utilizando datos 
hidroambientales de la cuenca de la quebrada Luxapallila 
localizada en los estados de Misisipi y Alabama, EE.UU. 
Los límites de incertidumbre de las salidas del modelo fueron 
calculados utilizando los métodos de simulación Monte Carlo 
y el método probabilístico de estimación puntual de Harr. El 
análisis de la propagación de la incertidumbre paramétrica 
en simulaciones de caudales con HSPF utilizando 12 
parámetros fue realizada con 5000 muestras aleatorias de 
Monte Carlo y 24 puntos seleccionados de Harr para cada 
parámetro evaluado. La comparación mostró que el método 
de Harr podría ser un indicador inicial apropiado de la 
propagación de la incertidumbre paramétrica en simulaciones 
de caudales, particularmente en modelos hidrológicos con 
varios parámetros.

Palabras clave: HSPF, incertidumbre paramétrica, simulación 
Monte Carlo, método de estimación puntal de Harr, límites de 
incertidumbre de simulaciones de caudales
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Introduction
Hydrologic models are represented by a series of input 
data (e.g. precipitation and evaporation), parameters 
(e.g. soil, land use, and channel properties), and structure 
(e.g. black-box, conceptual, physically based, grid, and 
lumped models). Every component of hydrologic models 
depicts uncertainty due to the lack of knowledge about 
real systems. Uncertainty in input data is due to natural 
variability, measurement inaccuracy, and errors in handling 
and processing data (Melching, 1995). Model parameters 
and structure show uncertainty due to model assumptions 
and approximations, scale effects, and variability of inputs 
and parameters in time and space (Gupta et al., 2005; Tung, 
1996). The uncertainty of input data on model results has 
been studied separately from model parameter uncertainty 
(Souid, 1999). Georgakakos et al. (2004) pointed out that 
few studies have investigated model structure uncertainty. 
Butts et al. (2004) declared that uncertainty evaluation 
is compensated among components (input data, model 
parameters, and model structure) because they are strongly 
interlinked. 

The identification, quantification, and reporting of the 
different sources of errors in a modeling process constitute 
an uncertainty analysis (McIntyre et al., 2002; Refsgaard 
and Henriksen 2004; Refsgaard et al., 2007). Uncertainty 
analysis has received considerable attention during the 
last two decades by the water resources community. In 
hydrological modeling, important progress has been 
observed in the identification and understanding of 
the different sources of uncertainty, as well as in the 
incorporation of strategies for their quantification (e.g. 
Butts et al., 2004; Georgakakos et al., 2004; Wagener 
et al., 2003). Uncertainty analysis of computer-based 
models is a valuable tool to do the following: understand 
the inability of a model to accurately and precisely depict 
the real world; enhance the value of information reported; 
distinguish between bias and precision error; calculate the 
precision limit of results; identify which components are 
most and least important; determine where to place more 
effort/resources to decrease the total uncertainty of the 
output; re-build a model; understand  model limitations 
and strengths; calculate statistical properties of a model 
output; determine reliability analysis; and compare and 
choose between  models (Morgan and Henrion, 1990; 

Tung, 1996; Tung and Yen, 2005).

Techniques applicable for evaluating error propagation 
from different sources on hydrology model results can be 
classified in three groups: first-order methods (Melching, 
1992, 1995; Zhang and Yu, 2004); probabilistic point 
estimate methods (Harr, 1989; Rosenblueth, 1975; Tung 
and Yen, 2005; Yu et al., 2001;); and Monte Carlo  based 
methods such as Bayesian analysis, Markov Chain Monte 
Carlo, and the Generalized Likelihood Uncertainty 
Estimation method (Beven and Binley, 1992; Dilks 
et al. 1992; Thiemann et al., 2001). Applications and 
comparisons of these techniques on hydrology models 
can be found in Rogers et al. (1985), Binley et al. (1991), 
Melching (1995), and Yu et al. (2001). In general, these 
studies assumed that the results of the Monte Carlo 
method were most reliable when estimations from other 
uncertainty methods were compared. The Monte Carlo 
simulation is the best known and simplest way of sampling 
the entire range of likely observations of the system being 
studied (Morgan and Henrion, 1990). Most of the first-
order and probabilistic point estimate methods are more 
computationally efficient than the Monte Carlo method. 
Melching (1995) pointed out that “research is needed to 
define strengths and weaknesses of applying these methods 
to computer models of watershed hydrology.”

Numerous real world hydrologic models exist, e.g. 
continuous or event based, distributed or lumped 
parameters, and empirical or physical equations (Singh, 
1995; Singh and Woolhiser, 2002; Singh and Frevert, 
2002). Currently many continuous hydrologic models 
are set up in conjunction with Geographical Information 
Systems GIS. In 1996, the US Environmental Protection 
Agency EPA released the Better Assessment Science 
Integrating Point and Nonpoint Sources – BASINS, which 
links the Hydrological Simulation Program – FORTRAN 
HSPF (Bicknell et al., 2001) and other watershed and water 
quality models with a GIS software, MapWindow (USEPA, 
2011). Also BASINS incorporates an extensive U.S. data 
base (i.e. land use, climatological and water quality data) 
graphical and statistical analysis, and reporting tools. 
The HSPF software is a continuous, reservoir-type, semi-
distributed parameter model supported by the USEPA. The 
HSPF model is one of the most comprehensive, flexible 
and modular programs of watershed hydrology and water 
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quality available (Donigian et al., 1995).  HSPF has been 
applied in different zones around the world since the 
1980’s (Diaz-Ramirez et al., 2008, 2011; Donigian et al., 
1995; Singh and Woolhiser, 2002). Applications of HSPF 
in watersheds in the southeastern United States can be 
found in Alarcon et al. (2009), Diaz-Ramirez et al. (2011), 
and Duan et al. (2008). These studies mainly analyzed 
hydrological processes on the Luxapallila Creek watershed 
(Alabama and Mississippi), Saint Louis Bay watershed 
(Mississippi), Fish River watershed (Alabama), and the 
Mobile Bay basin (Alabama, Mississippi, Tennessee, and 
Georgia).

The main goal of this study is to evaluate two uncertainty 
methods, the Monte Carlo method and Harr’s probabilistic 
point estimate method, in propagating HSPF parameter 
uncertainty into daily streamflow model results. Physical 
data from the Luxapallila Creek watershed are used to set 
up the HSPF model. This watershed is located in Alabama 
and Mississippi, USA. U.S. Geological Survey USGS 
streamflow data collected at the watershed outlet from 
01/01/2002 to 12/31/2005 were used to evaluate model 
results. 

The HSPF model
The Hydrological Simulation Program – FORTRAN HSPF 
model (Bicknell et al., 2001) computes the movement of 
water through a complete hydrologic cycle – precipitation 
(rain/snow), evapotranspiration, runoff, infiltration, and 
flow through the ground – and the associated transport 
of constituents with that flow. It represents a watershed 
as a collection of land segments and channels (reaches). 
The land segments, either pervious or impervious, are 
connected to other land segments or to channel reaches, 
which can function as either streams or reservoirs.  Rainfall 
is computed over the entire watershed and runs off land 
segments and reaches. Pervious land segments also store 
water in the plant canopy, on the surface, and in the soil, 
from which it can percolate into groundwater or flow down 
slope as interflow. Water in the plant canopy, surface, 
and surface soil layers can be lost to evapotranspiration. 
Water in reaches can be lost to evaporation, but not to 
groundwater. Water can flow from a land segment to a 
reach or to another land segment. Water in a reach must 

either be stored there or flow into another reach; it cannot 
flow onto land except by irrigation. Table 1 describes 
HSPF parameters and their ranges related to hydrology 
in areas without snow. The current HSPF application is 
in the Luxapallila Creek watershed, Alabama/Mississippi 
where climate is classified as humid subtropical. The 
most probable HSPF values in the Luxapallila Creek 
watershed were extracted from an 18-year (1985-2003) 
model evaluation performed by McAnally et al. (2006). 
The model tested by McAnally et al. (2006) was manually 
calibrated using guidelines provided by HSPF developers 
(USEPA, 2012) and explained more than 72% of the daily 
variability of streamflows. Coefficient of determination R2 
and Nash-Sutcliffe NS statistics were good on daily (R2 

= 0.72 and NS = 0.72) and monthly (R2 = 0.84 and NS 
= 0.84) periods. The model was evaluated under a large 
range of streamflows (0.8 m3/s to 566 m3/s). Table 1 also 
shows the impact of each HSPF parameter on modeling 
hydrologic processes. The impact of every HSPF 
parameter on hydrologic processes is based on guidelines 
provided by HSPF developers (USEPA, 2012). These 
guidelines provide advice on which parameter to modify, 
and in what direction, in order to accomplish a particular 
hydrologic process evaluation (water balance, high/low 
flow distribution, storm flow, and seasonal discrepancies).

The HSPF model also computes the transport and kinetics of 
multiple water quality constituents, including temperature, 
sediment, nutrients, and pesticides. As such, it presents 
a nearly complete package for modeling hydrology and 
water quality of a watershed. A more complete description 
of features and capabilities can be found in the HSPF user’s 
manual (Bicknell et al., 2001). Some versions of HSPF can 
be run in standalone mode, but the EPA-supported version 
is run through a BASINS interface, WinHSPF (USEPA, 
2011). The rainfall-runoff model HSPF requires specific 
inputs that BASINS can generate. Watershed delineation 
tools within BASINS enable the user to automatically or 
manually generate a watershed drainage network and sub-
networks, each consisting of land segments and receiving 
water reaches. 

The literature review reports several deterministic 
applications of the HSPF model (Moore et al., 1988; 
Laroche et al., 1996; Al-Abed and Whiteley, 2002; Hayashi 
et al., 2004; Albek et al., 2004; Nasr et al., 2007; Diaz-
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Table 1: HSPF parameter definition and range (USEPA, 2000); most probable value for Luxapallila Creek watershed simulations 
(McAnally et al., 2006); and hydrologic processes impacted by each parameter marked with X (USEPA, 2012)

Name Definition Range
most 

probable 
value

Hydrologic Process

water balance
high/

low flow 
distribution

storm flow seasonal 
discrepancies

LZSN 
mm

Lower zone nominal soil 
moisture storage 50.8 -381.0 228.6 X

INFILT mm/hr Index to infiltration capacity 0.025 – 12.7 2.8 X X X

KVARY 
1/mm Variable groundwater recession 0.0 – 127.0 45.7 X

AGWRC Base groundwater recession 0.92 - 0.999 0.997 X

DEEPFR Fraction of groundwater inflow 
to deep recharge 0.0 - 0.5 0.2 X X

BASETP
Fraction of remaining 
evapotranspiration from 
baseflow

0.0 - 0.2 0.04 X X

AGWETP
Fraction of remaining 
evapotranspiration from active 
groundwater

0.0 - 0.2 0.025 X

CEPSC mm Interception storage capacity 0.0 – 10.2 3.8 X

UZSN mm Upper zone nominal soil 
moisture storage 1.27 – 50.8 27.9 X

INTFW Interflow inflow parameter 1.0 - 10.0 3.0 X

IRC Interflow recession parameter 0.3 - 0.85 0.6 X

LZETP Lower zone evapotranspiration 
parameter 0.0 - 0.9 0.1 X X

Ramirez et al., 2008); however few applications attempt 
to quantify propagation of parameter, input data, and/
or structure uncertainty into model results. Paul (2003) 
evaluated the effect of parameter uncertainty in the HSPF 
model to predict in-stream bacterial concentrations using 
First Order Analysis FOA techniques. He evaluated 10 
water quality parameters from pervious and impervious 
areas and three in-stream water quality parameters. 
However, he did not evaluate the uncertainty effects 
of hydrologic/hydraulic parameters on modeling fecal 
coliform and assumed that the hydrology and hydraulic of 
the model were well calibrated. Paul (2003) pointed out that 
water quality parameters from pervious and impervious 
areas carried on most of the parameter uncertainty in 
simulated in-stream bacterial concentrations. In particular, 
the maximum storage of bacteria on pervious land surface 
parameter contributed with 99.86% of the variance in 
simulated peak in-stream concentration of fecal coliform 

concentration in-stream. The contribution of the three in-
stream water quality parameters to the output variance was 
negligible (0.12%). In addition, he recommended further 
research to evaluate the effects of hydrology and hydraulic 
processes on in-stream fecal coliform simulations.

Jia (2004) investigated parameter uncertainties in the HSPF 
model applying the generalized likelihood uncertainty 
estimation GLUE approach. A Latin hypercube sampling 
technique was used to generate random multiple parameter 
sets. The GLUE method introduced by Beven and Binley 
(1992) is a Monte Carlo based strategy for evaluation 
of parametric uncertainty. GLUE accepts multiple sets 
of parameter values as equal likely representations of 
a physical system. Other sources of uncertainty such 
as model structure and input data are treated implicitly 
within the GLUE framework. Unlike the formal methods 
for Bayesian inference, GLUE uses “informal” likelihood 
functions which are formulated without considering the 
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structure of the residuals between the observations and the 
model simulations of a given state variable. Therefore, any 
measure of goodness of fit such as the Nash and Sutcliffe 
efficiency criterion, or the total sum of the errors can be 
implemented in the GLUE methodology (Beven and Binley 
1992). Jia (2004) evaluated seven hydrologic parameters 
at the watershed outlet (i.e. LZSN, INFILT, AGWRC, 
DEEPFR, UZSN, and IRC). After 50000 HSPF runs, many 
acceptable parameter sets were identified by the GLUE 
approach. Information on the total runoff distribution was 
not available, and wide variations of the total runoff (i.e. 
surface runoff, interflow, and baseflow) were acceptable. 

Wu (2004) assessed the propagation of parameter 
uncertainty in both HSPF and CE-QUAL-W2 models using 
First-Order Error Analysis FOEA. He pointed out that the 
uncertainty in parameters related to streamflow generation 
was the main source of variance in simulated nutrient loads. 
However, when simulated nutrient concentrations were 
analyzed, some parameters related to hydrology processes 
have no significant effect. The author justified this 
difference by the non-linear relationship between pollutant 
loads and their concentrations. So, FOEA may not be an 
appropriate method to analyze propagation of parameter 
uncertainty in complex models. Wu recommends more 
analysis between FOEA and Monte Carlo analysis.

Harr and Monte Carlo methods
Uncertainty analysis methods used in hydrology simulation 
can be arranged in three groups: first-order methods, 
probabilistic point estimation methods, and Monte Carlo 
based methods. In this study, the Harr probabilistic point 
method and Monte Carlo method are used to propagate 
parameter uncertainty into HSPF streamflow simulations. 
The concept of probability point estimate methods PPEMs 
was originated by Rosenblueth (1975). A PPEM propagates 
the parameter uncertainty by performing point estimations 
of the function without calculating the derivatives of the 
function (first-order methods). Selected point estimations 
of model parameters are calculated using statistical 
moments (typically the mean and variance) of the variables 
instead of computing the entire probability density 
function PDF of the model parameters (as performed by 
Monte Carlo simulations). Harr (1989) developed a PPEM 
using the principal component matrix theory. This method 

considers the mean, standard deviation, and correlation of 
the parameters. The Harr method propagates the parameter 
uncertainty through model outputs by performing two 
point estimations of the parameter space. The correlation 
matrix of parameters, C, is decomposed as 

	 	 (1)

where e is the eigenvector matrix; λ is the diagonal 
eigenvalue matrix and eT  is the transpose of the eigenvector 
matrix. Thus, someone using Harr’s method must generate 
the correlation matrix of selected parameters and then 
compute, using mathematical programs such as MATLAB, 
the eigenvector matrix and the diagonal eigenvalue matrix. 
The uncorrelated and standardized coordinates can be 
calculated by

	

where μ is the vector of the expected values of the 
parameter; n is the number of parameters; σ is the diagonal 
matrix of the standard deviation of the parameters; and ei 
is the eigenvalue λi. Finally, based on the two coordinates 
selected along each eigenvector (2a) and (2b), the user 
must compute the corresponding model output values. For 
instance, this research used 12 HSPF parameters; thus 24 
coordinates were calculated and 24 model outputs were 
generated for each simulated day. Then, the 95th and 5th 
percentiles of these 24 model outputs were calculated 
to generate the 90% uncertainty bounds of model 
outputs using the percentile function in MATLAB. As a 
summary, the Harr method involves the following steps:

1.	 Identify model parameter ranges and sample 
values of each parameter;

2.	 verify the symmetry of each input parameter 
(if the distribution is not symmetric, the Harr 
method is not appropriate. However, parameter 
transformation could be performed to ensure input 
parameters are symmetric);

3.	 compute mean and standard deviation of each 
parameter;
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4.	 calculate the correlation matrix of each parameter;
5.	 determine eigenvectors from the correlation 

matrix;
6.	 compute 2n coordinate points using equations (2a) 

and (2b);
7.	 evaluate the model with parameter values 

computed in step 6;
8.	 analyze the model outputs (percentiles, mean, 

standard deviation, etc).

A drawback of the Harr method is that the uncorrelated and 
standardized coordinates may fall outside the parameter 
bounds (Christian and Baecher, 2002). In this study, 
when a coordinate was outside the pre-established HSPF 
parameter range, the closest parameter limit was used 
instead of the outside value. This issue can be related to 
poor definition of model parameter range. However, HSPF 
hydrologic algorithms have been tested since 1960 and 
model developers have developed a comprehensive list of 
parameter ranges (USEPA, 2000). An application of the 
Harr method in simulating watershed hydrology is found 
in Yu et al. (2001).

The Monte Carlo method computes an empirical probability 
distribution of the model output using random values 
for the input variables sampled from their probability 
distribution (Metropolis and Ulam, 1949). Detailed 
information on Monte Carlo simulation is found in Ronen 
(1988), Morgan and Henrion (1990), and Sobol’ (1994). 
The Monte Carlo simulation is the best known uncertainty 
method, and the simplest way of sampling the entire range 
of likely observations of the system being studied (Morgan 
and Henrion, 1990).  Melching (1995) declared that the 
Monte Carlo method “may be the only method that can 
estimate the cumulative density function CDF and PDF 
of Z (a model parameter) for cases with highly nonlinear 
and/or complex system relationships.” The Monte Carlo 
simulation involves five steps:

1.	 Generate probability distributions of selected model 
parameters (e.g., normal, triangular, beta, etc.);

2.	 calculate a random value from the parameter’s 
distributions;

3.	 evaluate the model using the random value 
calculated in step 2; 

4.	 repeat steps 2 and 3 many times; and
5.	 analyze the model outputs (e.g., CDF, percentiles, 

mean, standard deviation, etc.).

The Monte Carlo simulation has been applied to study the 
uncertainty of forcing input data and model parameters 
in computer models of watershed hydrology (Melching, 
1995; Carpenter and Georgakakos, 2004). Melching 
(1995) stated that “for complex, nonlinear models with 
many uncertainty basic variables, however, the number of 
simulations (thus the computer time) necessary to achieve 
an accurate estimate may become prohibitive.” Increasing 
of computer processing speeds makes computations more 
tractable. Monte Carlo method results have been used 
as a baseline when comparisons with other uncertainty 
methods have been done (Binley et al., 1991; Melching, 
1992; Melching, 1995; Yu et al., 2001).

In summary, the Harr method is computationally more 
efficient than the Monte Carlo method. In Harr’s method, 
mean, standard deviation of parameters and their 
correlations are used to propagate parameter uncertainty 
into model results. The Harr method is limited to 
symmetrical distributions and sometimes the uncorrelated 
and standardized coordinates are calculated out of the 
parameter bounds. The computation algorithm of the 
Monte Carlo method has a simple structure and is used 
in complex and nonlinear models. In the Monte Carlo 
method, random parameter inputs are computed from their 
probability distributions and are then propagated through 
model results. The Monte Carlo method is computationally 
time consuming at high levels of accuracy.

Methodology
Study area
This study used physical data from the Luxapallila Creek 
watershed located in the Southeastern of United States. 
The watershed flows through Fayette, Lamar, Marion, 
and Pickens counties in Alabama and into Lowndes and 
Monroe counties in Mississippi (Figure 1).  Near the outlet 
(USGS Station 02443500), the watershed has a drainage 
area of 1.801 km2, an average basin slope of 2%, and 
average annual precipitation (1982 - 2004) of 1.379 mm 
recorded at the Millport 2E weather station. Seasonal 
fluctuations in rainfall result in maximum river discharges 
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from January to April and minimum discharges from 
August to September. Elevation in the study area ranges 
from 45 to 274 m mean sea level. The USGS Geographic 
Information Retrieval and Analysis System GIRAS, states 
that land cover developed in the early 1980’s is distributed 
as 73% forest land, 20% agricultural land, 6% wetlands, 
and 1% other land types (barren, urban, and non-urban). 
More information about the Luxapallila Creek watershed 
can be found at Diaz-Ramirez et al. (2011).

Figure 1: Location of the Luxapallila Creek watershed

HSPF model set up
The Luxapallila watershed model was set up with a standard 
set of procedures and data as might be used in any BASINS 
application to provide a HSPF input data file (uci file).  
Spatial and climatic time series databases, including land 
use, overland flow slope and length, reach characteristics, 
and detailed meteorological data are used as inputs to 
HSPF. The model was lumped using one basin area and 
one main channel because streamflow-gauging station data 
from only one station were available (USGS 2443500).  
Topographic data were created from the standard USGS 
Digital Elevation Models DEMs, and the DEMs were also 
used to delineate the watershed boundaries. The length 
and slope of overland flow and reach were calculated and 
kept constant throughout the simulations. Manning’s n 
roughness coefficients for overland flows were determined 

by literature review and were kept constant throughout 
the simulations. The watershed was partitioned into five 
pervious and one impervious land types (Table 2).

Table 2: Pervious and impervious land types simulated using 
1980 GIRAS data

Land cover Surface area
km2

Surface area
%

Forest land 1316.9 73.1
Agricultural land 360.0 20.0
Barren land 2.5 0.1
Wetlands 104.4 5.8
Urban land (pervious) 8.1 0.4
Urban land (impervious) 8.1 0.4
Water 1.5 0.1

Hourly precipitation data were NEXRAD stage IV data 
from the Earth Observing Laboratory web page (http://data.
eol.ucar.edu/codiac/dss/id=21.093). Downloaded rainfall 
data were uncompressed and incorporated into input files by 
use of the Watershed Data Management WDMUtil software 
(Hummel et al., 2001). Hourly potential evapotranspiration, 
air temperature, dew point, wind speed, solar radiation, 
evaporation, and cloud cover values were obtained from 
the Haleyville station. The weather database for the 
Haleyville station was downloaded from the BASINS 
web site. The model was run for data from 01/01/2002 
through 12/31/2005. The model time step was hourly, 
but streamflow data were output daily to compare with 
observed data (USGS Station 02443500). 

Computational experiment
Monte Carlo method
The first step in the Monte Carlo simulation MCS was to 
determine the probability density functions PDFs for the 
input parameters considered in the study. In most studies 
this is performed by using a non-informative uniform 
distribution for each parameter, which covers a feasible 
range of parameter values for the particular study. Due 
to the lack of data to estimate the PDFs, all parameters 
were assigned a triangular distribution, which is defined 
by the lowest, most probable, and highest values. Most 
probable values were extracted from an 18-year model 
calibration of the Luxapallila Creek watershed (McAnally 
et al., 2006), see Table 1. Highest and lowest values were 



49

Diaz-Ramirez, J., Camacho, R., McAnally, W. and Martin, J. (2012). Obras y Proyectos 12, 42-56	

assigned based on the EPA BASINS Technical Note 6 
(USEPA, 2000), also in Table 1. Haan (2002) pointed 
out that the accuracy of the Monte Carlo simulations is a 
function of the assumed PDF and number of simulations 
performed. In selecting PDFs and number of simulations, 
there is no defined answer and judgment is required to 
make these decisions (Haan, 2002). Authors believe that 
taking into consideration the calibrated parameters (most 
probable values) from a long term deterministic evaluation 
(McAnally et al., 2006) in the study area will positively 
impact the Monte Carlo method results by forcing the 
parametric space search around the most probable values.

Five thousand random samples from the 12 HSPF 
parameter’s distributions (triangular distributions) were 
generated using MATLAB. Then, the HSPF program was 
run using the selected random samples from 01/01/2002 to 
12/31/2005. Finally, evaluation of streamflow simulations 
was accomplished (stability results, 95th and 5th percentiles) 
at daily levels with 5.000 streamflow simulations for each 
simulation day.

To determine the number of realizations (stability results) 
sufficient to analyze the uncertainty of streamflow 
simulations, the values of Absolute Relative Errors ARE of 
simulated daily flows were calculated as
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where N is the number of Monte Carlo simulations; and 
Qi is the simulated daily flow for run i. For instance, in 
this study, 1.096 daily HSPF streamflows from 01/01/2003 
through 12/31/2005 were used; this means that 1.095 ARE 
results were calculated for each Monte Carlo simulation.

Harr method
The first step in the Harr method was to calculate the 
correlation matrix, mean, and standard deviation of the 
12 HSPF parameters evaluated. The USEPA developed 
a database of HSPF model parameters (USEPA, 2006). 
This database was called HSPFParm and contains HSPF 
parameter values of several model applications in the 
U.S. Twenty seven sets of parameter values were used 
to compute the correlation matrix, mean, and standard 
deviation of selected parameters. Table 3 depicts mean, 

standard deviation, median, mode, and skew values of 
selected HSPF parameters. In a symmetric distribution, 
the mean, median, and mode are the same (Haan, 2002). 
For each parameter in Table 3, it can be observed that these 
three statistically measured values are close and the skew 
values are around zero. This means that the assumption of 
symmetry for input distributions in the Harr’s method is 
most likely valid in this study. Other uncertainties could 
arise in using the Harr’s method. For example, the short 
sets of parameter values (only 27) and the lack of parameter 
values found in the study site or near watersheds. Table 4 
shows the correlation matrix of selected HSPF parameters. 
Then, the eigenvector and eigenvalue matrices from the 
correlation matrix were calculated using MATLAB. 

Table 3:  Statistical measure values of selected HSPF parameters

Parameter mean standard 
deviation median mode skew*

LZSN, mm 146.7 48.0 156.4 180.6 -0.6
INFILT, mm/hour 2.0 1.0 1.9 1.9 1.6
KVARY, 1/mm 24.3 25.4 24.8 0.0 0.5
AGWRC 0.97 0.02 0.98 0.99 -1.5
DEEPFR 0.04 0.1 0.002 0.00 3.9
BASETP 0.02 0.02 0.02 0.00 1.5
AGWETP 0.02 0.04 0.02 0.00 2.1
CEPSC, mm 0.3 0.7 0.00 0.00 2.1
UZSN, mm 14.8 7.3 10.9 10.8 0.8
INTFW 2.9 1.7 2.7 2.7 1.7
IRC 0.7 0.2 0.8 0.8 -2.1
LZETP 0.3 0.3 0.3 0.0 0.5

* dimensionless

The model runs required to solve the system were 2 by 
the number of parameters. In this study, 12 parameters 
were evaluated; thus 24 model HSPF runs were required 
to solve the system. Using equations (2a) and (2b), the 
coordinates of the 24 intersection points by each HSPF 
parameter were calculated. Coordinate values out of range 
were changed by the closest limit value. Finally, using 
these 24 sets of parameters to determine the 95th and 5th 
percentiles of model outputs, the 90% uncertainty bounds 
(95th-5th percentiles) were calculated at daily levels from 
01/01/2003 to 12/31/2005. 

Performance evaluation 
The overall effect of parameter uncertainty on streamflow 
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simulations was evaluated by computing the 5th and 95th 
percentiles (i.e. 90% uncertainty bounds) of the Monte 
Carlo and Harr results. Two criteria were used to evaluate 
the HSPF 90% uncertainty bounds:

•	 Reliability: the number or percentage of daily 
observed streamflows within the HSPF 90% 
uncertainty bounds;

•	 Sharpness: the width of the HSPF 90% uncertainty 
bounds (minimum, median, and maximum values).

The HSPF 90% confidence intervals were evaluated using 
daily observed flow data from 01/01/2003 to 12/31/2005 
at the watershed outlet (USGS station 02443500). 
Three percentile classes of observed flows developed 
by the USGS (http://water.usgs.gov/waterwatch/) were 
calculated to find the effect of model Reliability to above 
normal (>75th percentile), normal (between 25th and 75th 
percentiles), and below normal flows (<25th percentile). 

In addition to the Reliability and Sharpness criteria, 
continuous hydrographs of 90% uncertainty bounds and 
observed data were plotted. Scatterplots were drawn of 
5th and 95th flow percentiles using the Monte Carlo and 
Harr scenarios. In this study, Monte Carlo simulations 
MCS were defined as benchmark. This method is widely 
considered as effective strategy for the evaluation of 
parametric uncertainty because the propagation of the 
parameter variability is performed using thousands of 
random numbers from the parameter distribution. On the 
other hand, the Harr method uses only 2 by the number of 
parameters to generate the uncertainty bounds. In Monte 
Carlo simulations, the computation of the sample size 

Table 4:  Correlation matrix of selected HSPF parameters

LZSN INFILT KVARY AGWRC DEEPFR BASETP AGWETP CEPSC UZSN INTFW IRC LZETP

LZSN 1.0 0.1 0.6 -0.2 -0.1 0.2 0.3 0.0 0.4 0.1 -0.3 0.4
INFILT 0.1 1.0 0.1 0.2 0.5 -0.1 0.1 0.6 0.1 0.0 -0.2 0.3
KVARY 0.6 0.1 1.0 -0.3 0.0 0.3 0.5 -0.3 0.6 0.3 -0.2 0.6
AGWRC -0.2 0.2 -0.3 1.0 0.1 -0.6 -0.2 0.1 0.0 -0.1 -0.1 -0.5
DEEPFR -0.1 0.5 0.0 0.1 1.0 -0.1 0.1 0.0 -0.1 -0.3 -0.2 0.0
BASETP 0.2 -0.1 0.3 -0.6 -0.1 1.0 0.7 0.2 0.0 -0.1 -0.2 0.2
AGWETP 0.3 0.1 0.5 -0.2 0.1 0.7 1.0 0.3 0.1 -0.1 -0.5 0.1
CEPSC 0.0 0.6 -0.3 0.1 0.0 0.2 0.3 1.0 0.0 -0.1 -0.5 0.0
UZSN 0.4 0.1 0.6 0.0 -0.1 0.0 0.1 0.0 1.0 0.4 -0.2 0.4
INTFW 0.1 0.0 0.3 -0.1 -0.3 -0.1 -0.1 -0.1 0.4 1.0 0.2 0.6
IRC -0.3 -0.2 -0.2 -0.1 -0.2 -0.2 -0.5 -0.5 -0.2 0.2 1.0 0.1
LZETP 0.4 0.3 0.6 -0.5 0.0 0.2 0.1 0.0 0.4 0.6 0.1 1.0

is a key factor (Haan, 2002). In this study, Monte Carlo 
simulations were made with sample sizes up to 5.000 runs. 
Then, the Absolute Relative Errors ARE (3) of simulated 
daily flows and number of Monte Carlo simulations were 
evaluated to find where the errors converge to a particular 
value.

Evaluation of the Harr method was accomplished in the 
same form as the MCS scenario (calculating the 95th 
and 5th percentiles of model outputs, and Reliability and 
Sharpness criteria). To compare the Monte Carlo results 
versus the Harr results, the Relative Error of Reliability 
REReliability and Sharpness RESharpness criteria values were 
calculated as follows:

Results and discussion
Stability results of the Monte Carlo method
Figure 2 shows the relationship between ARE of simulated 
daily flows and number of MCS. Each line in Figure 2 
represents one simulation day between 01/01/2003 and 
12/31/2005. This figure reveals that the ARE values were 
close between runs 2.000 and 5.000. In general, higher 
MCS yielded lower ARE results. It can be seen that the 
slope of the ARE values is steep for MCS less than 1.000 
runs and getting flat between 2.000 and 5.000 runs. The 
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median ARE values from 3.000 to 5.000 MCS were close 
(5∙10-5 to 7∙10-5). It took approximately 12 hours of CPU 
time to produce 5.000 simulations of the Luxapallila 
watershed model (with 115 NEXRAD grid points, one 
hour time step, and time simulation between 01/01/2002 
and 12/31/2005) using a desktop computer with a 3.06GHz 
Xeon(TM) CPU and 1.00 GB of RAM. Therefore, 5.000 
MCS, a median ARE value of 7∙10-5, and 12 hours of CPU 
time were considered sufficient for the purpose of this 
research. 

Figure 2: Stability of results using Monte Carlo method with 
Y-axis on a logarithmic scale

Uncertainty estimates
Results of parameter uncertainty propagation on HSPF 
model outputs using the Monte Carlo and Harr methods 
are shown in this section. Additionally, the Harr results 
were compared to the Monte Carlo results.

The Harr method used 24 simulations (two times the 
number of HSPF parameters) to solve the system, and 
normal distributions were used for the selected HSPF 
parameters. The baseline scenario using MCS used 5.000 
interactions and triangular distributions to calculate the 
90% uncertainty bounds.

Model Reliability results for the 2003-2005 period using 
the Monte Carlo and Harr methods were 65.4% and 72.7%, 
respectively. This means that the Harr method uncertainty 
bounds included 11% more observed daily flows than the 
90% uncertainty bounds yielded by the MCS. Relative 
errors of model Reliability results by observed flow 
percentiles from the Monte Carlo and Harr methods are 
shown in Table 5. The lowest and highest relative errors 

were -0.8% and 18.6%, respectively. Both uncertainty 
methods calculated close results for below normal flows. 
The Harr method consistently overestimated observed 
flows within the 90% uncertainty bounds for normal and 
above normal flows.

Table 5: Relative errors of model Reliability results by observed 
flow percentiles due to the Monte Carlo and Harr methods 
(2003-2005)

Observed flow percentiles MCS
%

Harr
%

Relative error
%

<25th 92.3 91.6 -0.8

25th-75th 60.2 71.4 18.6

>75th 48.2 55.8 15.9

Figure 3 displays 5th and 95th flow percentiles by the 
MCS and Harr methods. In general, high variability and 
a markedly high overestimation were shown by the Harr 
results. 

Figure 3: MCS and Harr methods (2003-2005), scatterplots of: 
a) 5th flow percentile and b) 95th flow percentile
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Figure 4 shows comparisons of uncertainty bounds 
generated by the MCS and Harr methods for selected 
storms. The uncertainty bounds calculated by both methods 
significantly differ from one another. All of the uncertainty 
bounds for peak flows by the Harr method were wider 
and higher than those yielded by the MCS. Table 6 shows 
selected percentiles of the model Sharpness calculated 
using the Monte Carlo and Harr methods. Clearly, the 
Harr method results overestimated the width of the 90% 
uncertainty bounds (model Sharpness) for each percentile. 

The minimum, median, and maximum relative errors of 
Sharpness criteria values between the MCS and Harr 
methods were -43.6%, 20.7%, and 563.6%, respectively. 
The higher model Sharpness calculated using the Harr 
method may be explained by the use of just 24 Harr runs 
rather than the 5.000 Monte Carlo runs. Additionally, the 
Harr method selected the parameter values using normal 
distributions of the evaluated parameters rather than the 
triangular distributions used by the Monte Carlo method. 

Figure 4: Daily observed hydrographs and uncertainty bounds estimated by the MCS and Harr methods
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Table 6: Selected percentiles of the range of the model Sharpness 
using the Monte Carlo and Harr methods

Percentile MCS
m3/s

Harr
m3/s

Minimum 4.8 7.1
25th 10.8 13.4
50th 16.2 19.1
75th 27.0 34.9

Maximum 336.7 444.4

A drawback of the Harr method was the use of several 
parameter limit values rather than the calculated values 
to stay within the pre-established range of the HSPF 
parameters.  Detailed definition of the 12 HSPF hydrology 
parameters used in this study is found in USEPA (2000). 
It was found that 16% of the coordinate values calculated 
by the Harr method were outside of the pre-defined 
parameter ranges (Table 7). Harr coordinate values out 
of range were changed by the closest limit value. HSPF 
parameters related to storm events, INTFW and IRC, 
yielded 20.8% and 16.7% respectively of values out of 
range. All of the new INTFW values were relocated to the 
lowest limit and, therefore, peak flows were expected to 
increase. IRC and AGWRC parameters control the rate 
at which interflow and groundwater, respectively, are 
discharged from storage. The KVARY parameter is used to 
describe non-linear groundwater recession rate. All of the 
new IRC and AGWRC values were changed to the highest 
limit and thus, slow flow rates in the recession limbs were 
estimated. The new KVARY values were relocated to the 
lowest limit and consequently, no seasonal variability of 
the groundwater flow was expected. DEEPFR, BASETP, 
AGWETP, CEPSC, and LZETP parameters control loss 
of water from the system and were replaced to the lowest 
value; therefore, streamflows were expected to increase.

In summary, the rearrangement of the Harr coordinates 
yielded more streamflow in the system and, therefore, 
the Harr model Sharpness was higher than the Monte 
Carlo results (baseline scenario). Christian and Baecher 
(2002) analyzed the problem of coordinate relocation in 
the Harr method for bounded parameters. They pointed 
out that “there seem to be no simple, elegant ways out 
of this dilemma.” The use of other uncertainty methods 
(e.g. Rosenblueth’s method or the Monte Carlo method) 
or reducing the number of random variables was 
recommended by the authors. 

Table 7: Number of parameter values calculated out of range by 
the Harr method

Parameter

Relocation of the 
coordinates

Number of 
parameter 

values out of 
the range

Percentage 
of total

Lowest Highest

LZSN 1 1 4.2
INFILT 0 0.0
KVARY 4 4 16.7
AGWRC 2 2 8.3
DEEPFR 9 9 37.5
BASETP 5 5 20.8
AGWETP 7 7 29.2
CEPSC 5 5 20.8
UZSN 1 1 4.2
INTFW 5 5 20.8
IRC 4 4 16.7
LZETP 3 1 4 16.7

Summary and conclusions 
Variability of 12 HSPF hydrology parameters was 
propagated through the USEPA HSPF model to compute the 
90% uncertainty bounds of daily streamflow simulations 
using the Harr probabilistic point estimate method and 
Monte Carlo simulation. This study used physical data from 
a watershed in Alabama and Mississippi, USA. The Harr 
method is a very simple uncertainty method that only uses 
the mean, standard deviation, and correlation of symmetric 
variables. The Monte Carlo method is a straightforward 
uncertainty method that is computationally inefficient 
for large sets of data and requires the description of the 
probability distribution function. 

In this study, reasonable estimates of mean and standard 
deviation of 12 HSPF parameters were obtained from a 
database with 27 model applications in USA. It was shown 
that the variables were roughly symmetric meaning that 
a probabilistic definition can be achieved using the Harr 
method. The Harr method calculated 11% more observed 
flows within the 90% uncertainty bounds than the Monte 
Carlo results. Computational efficiency was improved, 
using 24 runs (two minutes) with Harr’s method to estimate 
the HSPF 90% uncertainty bounds versus 5.000 runs (12 
hours) using the Monte Carlo method. A drawback of the 
Harr method was the use of several parameter limit values 
instead of the calculated value to keep the pre-established 
range of the HSPF parameters. In some parameters around 
30% of values were changed and the rearrangement of the 
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Harr coordinates yielded more streamflow in the system. 
Therefore, the model Sharpness was wider with the Harr 
results than with the Monte Carlo results (median relative 
errors around 20% were calculated for model Sharpness).  
Model Sharpness was wider with the Harr method because 
it forced extreme values of each parameter to be sampled 
with the same or higher frequency as the central values, 
thus exploring a broader range of HSPF outputs than 
those generated using the Monte Carlo method (triangular 
distributions). The Harr method Sharpness bias was fairly 
constant throughout the different flows (below normal, 
normal, and above normal); however, the model Reliability 
results were variable throughout the different flows, with 
relative errors of -0.8%, 18.6%, and 15.9% for below 
normal, normal, and above normal flows, respectively.  

The comparison showed that Harr’s method could be 
an appropriate initial indicator of parameter uncertainty 
propagation on streamflow simulations, in particular on 
hydrology models with several parameters and high spatial 
discretization (multidimensional grid models). The Monte 
Carlo simulations are recommended when knowledge 
(probability distribution functions of variables) and 
computational resources (in terms of computational power 
to solve large sets of data) are feasible. More research is 
needed to find appropriate estimates of statistical moments 
(Harr method) and probability distribution function (Monte 
Carlo method) of model parameters that could improve 
uncertainty method results.
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