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Water resources modelers face the challenge of
dealing with numerous uncertainties due to the
lack of knowledge of the natural systems, numerical
approaches used in modeling (equations, parameters,
structures, solutions), and field data collected to set
up and evaluate models. Propagation of parameter
uncertainty into model results is a relevant topic
in environmental hydrology. Uncertainty analyses
improve assessment of hydrological modeling. There is
a need in modern hydrology of developing and testing
uncertainty analysis methods that support hydrological
model evaluation. In this research the propagation of
model parameter uncertainty into streamflow model
results is evaluated. The Hydrological Simulation
Program — FORTRAN (HSPF) supported by the US
Environmental Protection Agency was evaluated using
hydroenvironmental data from the Luxapallila Creek
watershed located in Mississippi and Alabama, USA.
The uncertainty bounds of model outputs were computed
using the Monte Carlo simulation and Harr's point
estimation methods. Analysis of parameter uncertainty
propagation on streamflow simulations from 12 HSPF
parameters was accomplished using 5,000 Monte
Carlo random samples and 24 Harr selected points for
each selected parameter. The comparison showed that
Harr s method could be an appropriate initial indicator
of parameter uncertainty propagation on streamflow
simulations, particularly for hydrology models with
several parameters.

Keywords: HSPFE  parameter uncertainty, Monte
Carlo simulation, Harr's point estimation method,
uncertainty bounds of streamflow simulations

Los modeladores de recursos hidricos enfrentan el desafio de
trabajar con diferentes tipos de incertidumbre debido a la
falta de un completo conocimiento de los sistemas naturales,
procesos de modelacion, aproximaciones numéricas
(ecuaciones, parametros, estructuras, soluciones), y datos
de terreno tomados para desarrollar y evaluar modelos.
La propagacion de la incertidumbre paramétrica en los
resultados de las simulaciones es un topico relevante en la
hidrologia ambiental. Los analisis de incertidumbre mejoran
la evaluacion en el modelamiento hidrologico. Existe una
necesidad en la hidrologia moderna de desarrollar y evaluar
métodos de andlisis de incertidumbre que apoyen la evaluacion
de los modelos hidrologicos. En esta investigacion se evaluo
la propagacion de la incertidumbre de los parametros de un
modelo en los resultados del flujo simulado. Un programa de
simulacion hidrologico HSPF patrocinado por la Agencia
Ambiental de los EE.UU., fue evaluado utilizando datos
hidroambientales de la cuenca de la quebrada Luxapallila
localizada en los estados de Misisipi y Alabama, EE.UU.
Los limites de incertidumbre de las salidas del modelo fueron
calculados utilizando los métodos de simulacion Monte Carlo
v el método probabilistico de estimacion puntual de Harr. El
analisis de la propagacion de la incertidumbre paramétrica
en simulaciones de caudales con HSPF utilizando 12
parametros fue realizada con 5000 muestras aleatorias de
Monte Carlo y 24 puntos seleccionados de Harr para cada
parametro evaluado. La comparacion mostro que el método
de Harr podria ser un indicador inicial apropiado de la
propagacion de la incertidumbre paramétrica en simulaciones
de caudales, particularmente en modelos hidrologicos con
varios parametros.

Palabras clave: HSPF, incertidumbre paramétrica, simulacion
Monte Carlo, método de estimacion puntal de Harr, limites de
incertidumbre de simulaciones de caudales
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Introduction

Hydrologic models are represented by a series of input
data (e.g. precipitation and evaporation), parameters
(e.g. soil, land use, and channel properties), and structure
(e.g. black-box, conceptual, physically based, grid, and
lumped models). Every component of hydrologic models
depicts uncertainty due to the lack of knowledge about
real systems. Uncertainty in input data is due to natural
variability, measurement inaccuracy, and errors in handling
and processing data (Melching, 1995). Model parameters
and structure show uncertainty due to model assumptions
and approximations, scale effects, and variability of inputs
and parameters in time and space (Gupta et al., 2005; Tung,
1996). The uncertainty of input data on model results has
been studied separately from model parameter uncertainty
(Souid, 1999). Georgakakos et al. (2004) pointed out that
few studies have investigated model structure uncertainty.
Butts et al. (2004) declared that uncertainty evaluation
is compensated among components (input data, model
parameters, and model structure) because they are strongly
interlinked.

The identification, quantification, and reporting of the
different sources of errors in a modeling process constitute
an uncertainty analysis (Mclntyre ef al., 2002; Refsgaard
and Henriksen 2004; Refsgaard et al., 2007). Uncertainty
analysis has received considerable attention during the
last two decades by the water resources community. In
hydrological modeling, important progress has been
observed in the identification and understanding of
the different sources of uncertainty, as well as in the
incorporation of strategies for their quantification (e.g.
Butts et al., 2004; Georgakakos et al., 2004; Wagener
et al., 2003). Uncertainty analysis of computer-based
models is a valuable tool to do the following: understand
the inability of a model to accurately and precisely depict
the real world; enhance the value of information reported;
distinguish between bias and precision error; calculate the
precision limit of results; identify which components are
most and least important; determine where to place more
effort/resources to decrease the total uncertainty of the
output; re-build a model; understand model limitations
and strengths; calculate statistical properties of a model
output; determine reliability analysis; and compare and
choose between models (Morgan and Henrion, 1990;

Tung, 1996; Tung and Yen, 2005).

Techniques applicable for evaluating error propagation
from different sources on hydrology model results can be
classified in three groups: first-order methods (Melching,
1992, 1995; Zhang and Yu, 2004); probabilistic point
estimate methods (Harr, 1989; Rosenblueth, 1975; Tung
and Yen, 2005; Yu et al., 2001;); and Monte Carlo based
methods such as Bayesian analysis, Markov Chain Monte
Carlo, and the Generalized Likelihood Uncertainty
Estimation method (Beven and Binley, 1992; Dilks
et al. 1992; Thiemann et al., 2001). Applications and
comparisons of these techniques on hydrology models
can be found in Rogers ef al. (1985), Binley ef al. (1991),
Melching (1995), and Yu et al. (2001). In general, these
studies assumed that the results of the Monte Carlo
method were most reliable when estimations from other
uncertainty methods were compared. The Monte Carlo
simulation is the best known and simplest way of sampling
the entire range of likely observations of the system being
studied (Morgan and Henrion, 1990). Most of the first-
order and probabilistic point estimate methods are more
computationally efficient than the Monte Carlo method.
Melching (1995) pointed out that “research is needed to
define strengths and weaknesses of applying these methods
to computer models of watershed hydrology.”

Numerous real world hydrologic models exist, e.g.
continuous or event based, distributed or lumped
parameters, and empirical or physical equations (Singh,
1995; Singh and Woolhiser, 2002; Singh and Frevert,
2002). Currently many continuous hydrologic models
are set up in conjunction with Geographical Information
Systems GIS. In 1996, the US Environmental Protection
Agency EPA released the Better Assessment Science
Integrating Point and Nonpoint Sources — BASINS, which
links the Hydrological Simulation Program — FORTRAN
HSPF (Bicknell ez al., 2001) and other watershed and water
quality models with a GIS software, MapWindow (USEPA,
2011). Also BASINS incorporates an extensive U.S. data
base (i.e. land use, climatological and water quality data)
graphical and statistical analysis, and reporting tools.
The HSPF software is a continuous, reservoir-type, semi-
distributed parameter model supported by the USEPA. The
HSPF model is one of the most comprehensive, flexible
and modular programs of watershed hydrology and water
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quality available (Donigian et al., 1995). HSPF has been
applied in different zones around the world since the
1980°s (Diaz-Ramirez et al., 2008, 2011; Donigian et al.,
1995; Singh and Woolhiser, 2002). Applications of HSPF
in watersheds in the southeastern United States can be
found in Alarcon et al. (2009), Diaz-Ramirez et al. (2011),
and Duan et al. (2008). These studies mainly analyzed
hydrological processes on the Luxapallila Creek watershed
(Alabama and Mississippi), Saint Louis Bay watershed
(Mississippi), Fish River watershed (Alabama), and the
Mobile Bay basin (Alabama, Mississippi, Tennessee, and
Georgia).

The main goal of this study is to evaluate two uncertainty
methods, the Monte Carlo method and Harr’s probabilistic
point estimate method, in propagating HSPF parameter
uncertainty into daily streamflow model results. Physical
data from the Luxapallila Creek watershed are used to set
up the HSPF model. This watershed is located in Alabama
and Mississippi, USA. U.S. Geological Survey USGS
streamflow data collected at the watershed outlet from
01/01/2002 to 12/31/2005 were used to evaluate model
results.

The HSPF model

The Hydrological Simulation Program — FORTRAN HSPF
model (Bicknell ef al., 2001) computes the movement of
water through a complete hydrologic cycle — precipitation
(rain/snow), evapotranspiration, runoff, infiltration, and
flow through the ground — and the associated transport
of constituents with that flow. It represents a watershed
as a collection of land segments and channels (reaches).
The land segments, either pervious or impervious, are
connected to other land segments or to channel reaches,
which can function as either streams or reservoirs. Rainfall
is computed over the entire watershed and runs off land
segments and reaches. Pervious land segments also store
water in the plant canopy, on the surface, and in the soil,
from which it can percolate into groundwater or flow down
slope as interflow. Water in the plant canopy, surface,
and surface soil layers can be lost to evapotranspiration.
Water in reaches can be lost to evaporation, but not to
groundwater. Water can flow from a land segment to a
reach or to another land segment. Water in a reach must

either be stored there or flow into another reach; it cannot
flow onto land except by irrigation. Table 1 describes
HSPF parameters and their ranges related to hydrology
in areas without snow. The current HSPF application is
in the Luxapallila Creek watershed, Alabama/Mississippi
where climate is classified as humid subtropical. The
most probable HSPF values in the Luxapallila Creek
watershed were extracted from an 18-year (1985-2003)
model evaluation performed by McAnally et al. (2006).
The model tested by McAnally et al. (2006) was manually
calibrated using guidelines provided by HSPF developers
(USEPA, 2012) and explained more than 72% of the daily
variability of streamflows. Coefficient of determination R?
and Nash-Sutcliffe NS statistics were good on daily (R?
= 0.72 and NS = 0.72) and monthly (R?>= 0.84 and NS
= 0.84) periods. The model was evaluated under a large
range of streamflows (0.8 m?/s to 566 m?/s). Table 1 also
shows the impact of each HSPF parameter on modeling
hydrologic processes.
parameter on hydrologic processes is based on guidelines
provided by HSPF developers (USEPA, 2012). These
guidelines provide advice on which parameter to modify,
and in what direction, in order to accomplish a particular

The impact of every HSPF

hydrologic process evaluation (water balance, high/low
flow distribution, storm flow, and seasonal discrepancies).

The HSPF model also computes the transport and kinetics of
multiple water quality constituents, including temperature,
sediment, nutrients, and pesticides. As such, it presents
a nearly complete package for modeling hydrology and
water quality of a watershed. A more complete description
of features and capabilities can be found in the HSPF user’s
manual (Bicknell ef al., 2001). Some versions of HSPF can
be run in standalone mode, but the EPA-supported version
is run through a BASINS interface, WinHSPF (USEPA,
2011). The rainfall-runoff model HSPF requires specific
inputs that BASINS can generate. Watershed delineation
tools within BASINS enable the user to automatically or
manually generate a watershed drainage network and sub-
networks, each consisting of land segments and receiving
water reaches.

The literature review reports several deterministic
applications of the HSPF model (Moore et al., 1988;
Laroche et al., 1996; Al-Abed and Whiteley, 2002; Hayashi
et al., 2004; Albek et al., 2004; Nasr et al., 2007; Diaz-
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Table 1: HSPF parameter definition and range (USEPA, 2000); most probable value for Luxapallila Creek watershed simulations
(McAnally et al., 2006); and hydrologic processes impacted by each parameter marked with X (USEPA, 2012)

Hydrologic Process
most
Name Definition Range probable high/ 1
seasona
value | water balance low flow storm flow . .
e discrepancies
distribution
LZSN Lower zone nominal soil 50.8-381.0 286 X
mm moisture storage
INFILT mm/hr Index to infiltration capacity 0.025-12.7 2.8 X X X
KVARY Variable groundwater recession 0.0-127.0 45.7 X
1/mm
AGWRC Base groundwater recession 0.92-0.999 0.997 X
DEEPFR Fraction of groundwater inflow 00-05 02 X X
to deep recharge
Fraction of remaining
BASETP evapotranspiration from 0.0-0.2 0.04 X X
baseflow
Fraction of remaining
AGWETP evapotranspiration from active 0.0-0.2 0.025 X
groundwater
CEPSC mm Interception storage capacity 0.0-10.2 3.8 X
UZSN mm Upper zone nominal soil 127-50.8 27.9 X
moisture storage
INTFW Interflow inflow parameter 1.0-10.0 3.0 X
IRC Interflow recession parameter 0.3-0.85 0.6 X
LZETP Lower zone evapotranspiration 0.0-0.9 01 X X
parameter

Ramirez et al., 2008); however few applications attempt
to quantify propagation of parameter, input data, and/
or structure uncertainty into model results. Paul (2003)
evaluated the effect of parameter uncertainty in the HSPF
model to predict in-stream bacterial concentrations using
First Order Analysis FOA techniques. He evaluated 10
water quality parameters from pervious and impervious
areas and three in-stream water quality parameters.
However, he did not evaluate the uncertainty effects
of hydrologic/hydraulic parameters on modeling fecal
coliform and assumed that the hydrology and hydraulic of
the model were well calibrated. Paul (2003) pointed out that
water quality parameters from pervious and impervious
areas carried on most of the parameter uncertainty in
simulated in-stream bacterial concentrations. In particular,
the maximum storage of bacteria on pervious land surface
parameter contributed with 99.86% of the variance in
simulated peak in-stream concentration of fecal coliform

concentration in-stream. The contribution of the three in-
stream water quality parameters to the output variance was
negligible (0.12%). In addition, he recommended further
research to evaluate the effects of hydrology and hydraulic
processes on in-stream fecal coliform simulations.

Jia (2004) investigated parameter uncertainties in the HSPF
model applying the generalized likelihood uncertainty
estimation GLUE approach. A Latin hypercube sampling
technique was used to generate random multiple parameter
sets. The GLUE method introduced by Beven and Binley
(1992) is a Monte Carlo based strategy for evaluation
of parametric uncertainty. GLUE accepts multiple sets
of parameter values as equal likely representations of
a physical system. Other sources of uncertainty such
as model structure and input data are treated implicitly
within the GLUE framework. Unlike the formal methods
for Bayesian inference, GLUE uses “informal” likelihood
functions which are formulated without considering the
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structure of the residuals between the observations and the
model simulations of a given state variable. Therefore, any
measure of goodness of fit such as the Nash and Sutcliffe
efficiency criterion, or the total sum of the errors can be
implemented in the GLUE methodology (Beven and Binley
1992). Jia (2004) evaluated seven hydrologic parameters
at the watershed outlet (i.e. LZSN, INFILT, AGWRC,
DEEPFR, UZSN, and IRC). After 50000 HSPF runs, many
acceptable parameter sets were identified by the GLUE
approach. Information on the total runoff distribution was
not available, and wide variations of the total runoff (i.e.
surface runoff, interflow, and baseflow) were acceptable.

Wu (2004) assessed the propagation of parameter
uncertainty in both HSPF and CE-QUAL-W2 models using
First-Order Error Analysis FOEA. He pointed out that the
uncertainty in parameters related to streamflow generation
was the main source of variance in simulated nutrient loads.
However, when simulated nutrient concentrations were
analyzed, some parameters related to hydrology processes
have no significant effect. The author justified this
difference by the non-linear relationship between pollutant
loads and their concentrations. So, FOEA may not be an
appropriate method to analyze propagation of parameter
uncertainty in complex models. Wu recommends more
analysis between FOEA and Monte Carlo analysis.

Harr and Monte Carlo methods

Uncertainty analysis methods used in hydrology simulation
can be arranged in three groups: first-order methods,
probabilistic point estimation methods, and Monte Carlo
based methods. In this study, the Harr probabilistic point
method and Monte Carlo method are used to propagate
parameter uncertainty into HSPF streamflow simulations.
The concept of probability point estimate methods PPEMs
was originated by Rosenblueth (1975). APPEM propagates
the parameter uncertainty by performing point estimations
of the function without calculating the derivatives of the
function (first-order methods). Selected point estimations
of model parameters are calculated using statistical
moments (typically the mean and variance) of the variables
instead of computing the entire probability density
function PDF of the model parameters (as performed by
Monte Carlo simulations). Harr (1989) developed a PPEM
using the principal component matrix theory. This method

considers the mean, standard deviation, and correlation of
the parameters. The Harr method propagates the parameter
uncertainty through model outputs by performing two
point estimations of the parameter space. The correlation
matrix of parameters, C, is decomposed as

C=ele’ (1)
where e is the eigenvector matrix; 4 is the diagonal
eigenvalue matrix and e’ is the transpose of the eigenvector
matrix. Thus, someone using Harr’s method must generate
the correlation matrix of selected parameters and then
compute, using mathematical programs such as MATLAB,
the eigenvector matrix and the diagonal eigenvalue matrix.
The uncorrelated and standardized coordinates can be
calculated by

x'=L+Jnoe, (2a)

x; =+noe (2b)

where u is the vector of the expected values of the
parameter; # is the number of parameters; o is the diagonal
matrix of the standard deviation of the parameters; and e,
is the eigenvalue /. Finally, based on the two coordinates
selected along each eigenvector (2a) and (2b), the user
must compute the corresponding model output values. For
instance, this research used 12 HSPF parameters; thus 24
coordinates were calculated and 24 model outputs were
generated for each simulated day. Then, the 95th and 5th
percentiles of these 24 model outputs were calculated
to generate the 90% uncertainty bounds of model
outputs using the percentile function in MATLAB. As a
summary, the Harr method involves the following steps:

1. TIdentify model parameter ranges and sample
values of each parameter;

2. verify the symmetry of each input parameter
(if the distribution is not symmetric, the Harr
method is not appropriate. However, parameter
transformation could be performed to ensure input
parameters are symmetric);

3. compute mean and standard deviation of each
parameter;
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calculate the correlation matrix of each parameter;
5. determine eigenvectors from the correlation
matrix;
6. compute 2n coordinate points using equations (2a)
and (2b);

7. evaluate the model with parameter values
computed in step 6;

8. analyze the model outputs (percentiles, mean,
standard deviation, etc).

A drawback of the Harr method is that the uncorrelated and
standardized coordinates may fall outside the parameter
bounds (Christian and Baecher, 2002). In this study,
when a coordinate was outside the pre-established HSPF
parameter range, the closest parameter limit was used
instead of the outside value. This issue can be related to
poor definition of model parameter range. However, HSPF
hydrologic algorithms have been tested since 1960 and
model developers have developed a comprehensive list of
parameter ranges (USEPA, 2000). An application of the
Harr method in simulating watershed hydrology is found
in Yu et al. (2001).

The Monte Carlo method computes an empirical probability
distribution of the model output using random values
for the input variables sampled from their probability
distribution (Metropolis and Ulam, 1949). Detailed
information on Monte Carlo simulation is found in Ronen
(1988), Morgan and Henrion (1990), and Sobol’ (1994).
The Monte Carlo simulation is the best known uncertainty
method, and the simplest way of sampling the entire range
of likely observations of the system being studied (Morgan
and Henrion, 1990). Melching (1995) declared that the
Monte Carlo method “may be the only method that can
estimate the cumulative density function CDF and PDF
of Z (a model parameter) for cases with highly nonlinear
and/or complex system relationships.” The Monte Carlo
simulation involves five steps:

1. Generate probability distributions of selected model
parameters (e.g., normal, triangular, beta, efc.);

2. calculate a random value from the parameter’s
distributions;

3. evaluate the model using the random value
calculated in step 2;

4. repeat steps 2 and 3 many times; and

5. analyze the model outputs (e.g., CDF, percentiles,
mean, standard deviation, etc.).

The Monte Carlo simulation has been applied to study the
uncertainty of forcing input data and model parameters
in computer models of watershed hydrology (Melching,
1995; Carpenter and Georgakakos, 2004). Melching
(1995) stated that “for complex, nonlinear models with
many uncertainty basic variables, however, the number of
simulations (thus the computer time) necessary to achieve
an accurate estimate may become prohibitive.” Increasing
of computer processing speeds makes computations more
tractable. Monte Carlo method results have been used
as a baseline when comparisons with other uncertainty
methods have been done (Binley et al., 1991; Melching,
1992; Melching, 1995; Yu et al., 2001).

In summary, the Harr method is computationally more
efficient than the Monte Carlo method. In Harr’s method,
mean, standard deviation of parameters and their
correlations are used to propagate parameter uncertainty
The Harr method is limited to

symmetrical distributions and sometimes the uncorrelated

into model results.

and standardized coordinates are calculated out of the
parameter bounds. The computation algorithm of the
Monte Carlo method has a simple structure and is used
in complex and nonlinear models. In the Monte Carlo
method, random parameter inputs are computed from their
probability distributions and are then propagated through
model results. The Monte Carlo method is computationally
time consuming at high levels of accuracy.

Methodology

Study area

This study used physical data from the Luxapallila Creek
watershed located in the Southeastern of United States.
The watershed flows through Fayette, Lamar, Marion,
and Pickens counties in Alabama and into Lowndes and
Monroe counties in Mississippi (Figure 1). Near the outlet
(USGS Station 02443500), the watershed has a drainage
area of 1.801 km? an average basin slope of 2%, and
average annual precipitation (1982 - 2004) of 1.379 mm
recorded at the Millport 2E weather station. Seasonal
fluctuations in rainfall result in maximum river discharges
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from January to April and minimum discharges from
August to September. Elevation in the study area ranges
from 45 to 274 m mean sea level. The USGS Geographic
Information Retrieval and Analysis System GIRAS, states
that land cover developed in the early 1980’s is distributed
as 73% forest land, 20% agricultural land, 6% wetlands,
and 1% other land types (barren, urban, and non-urban).
More information about the Luxapallila Creek watershed
can be found at Diaz-Ramirez et al. (2011).
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Figure 1: Location of the Luxapallila Creek watershed

HSPF model set up

The Luxapallila watershed model was set up with a standard
set of procedures and data as might be used in any BASINS
application to provide a HSPF input data file (uci file).
Spatial and climatic time series databases, including land
use, overland flow slope and length, reach characteristics,
and detailed meteorological data are used as inputs to
HSPF. The model was lumped using one basin area and
one main channel because streamflow-gauging station data
from only one station were available (USGS 2443500).
Topographic data were created from the standard USGS
Digital Elevation Models DEMs, and the DEMs were also
used to delineate the watershed boundaries. The length
and slope of overland flow and reach were calculated and
kept constant throughout the simulations. Manning’s n
roughness coefficients for overland flows were determined

by literature review and were kept constant throughout
the simulations. The watershed was partitioned into five
pervious and one impervious land types (Table 2).

Table 2: Pervious and impervious land types simulated using
1980 GIRAS data

Surface area  Surface area

Land cover . o,
Forest land 1316.9 73.1
Agricultural land 360.0 20.0
Barren land 2.5 0.1
Wetlands 104.4 5.8
Urban land (pervious) 8.1 0.4
Urban land (impervious) 8.1 0.4
Water 1.5 0.1

Hourly precipitation data were NEXRAD stage IV data
from the Earth Observing Laboratory web page (http://data.
eol.ucar.edu/codiac/dss/id=21.093). Downloaded rainfall
data were uncompressed and incorporated into input files by
use of the Watershed Data Management WDMUItil software
(Hummel et al., 2001). Hourly potential evapotranspiration,
air temperature, dew point, wind speed, solar radiation,
evaporation, and cloud cover values were obtained from
the Haleyville station. The weather database for the
Haleyville station was downloaded from the BASINS
web site. The model was run for data from 01/01/2002
through 12/31/2005. The model time step was hourly,
but streamflow data were output daily to compare with
observed data (USGS Station 02443500).

Computational experiment

Monte Carlo method

The first step in the Monte Carlo simulation MCS was to
determine the probability density functions PDFs for the
input parameters considered in the study. In most studies
this is performed by using a non-informative uniform
distribution for each parameter, which covers a feasible
range of parameter values for the particular study. Due
to the lack of data to estimate the PDFs, all parameters
were assigned a triangular distribution, which is defined
by the lowest, most probable, and highest values. Most
probable values were extracted from an 18-year model
calibration of the Luxapallila Creek watershed (McAnally
et al., 2006), see Table 1. Highest and lowest values were
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assigned based on the EPA BASINS Technical Note 6
(USEPA, 2000), also in Table 1. Haan (2002) pointed
out that the accuracy of the Monte Carlo simulations is a
function of the assumed PDF and number of simulations
performed. In selecting PDFs and number of simulations,
there is no defined answer and judgment is required to
make these decisions (Haan, 2002). Authors believe that
taking into consideration the calibrated parameters (most
probable values) from a long term deterministic evaluation
(McAnally et al., 2006) in the study area will positively
impact the Monte Carlo method results by forcing the
parametric space search around the most probable values.

Five thousand random samples from the 12 HSPF
parameter’s distributions (triangular distributions) were
generated using MATLAB. Then, the HSPF program was
run using the selected random samples from 01/01/2002 to
12/31/2005. Finally, evaluation of streamflow simulations
was accomplished (stability results, 95th and 5th percentiles)
at daily levels with 5.000 streamflow simulations for each
simulation day:.

To determine the number of realizations (stability results)
sufficient to analyze the uncertainty of streamflow
simulations, the values of Absolute Relative Errors ARE of
simulated daily flows were calculated as

ARE = ﬁ“[|Qi+1Q_ Qx|:|

3)

where N is the number of Monte Carlo simulations; and
Q. is the simulated daily flow for run i. For instance, in
this study, 1.096 daily HSPF streamflows from 01/01/2003
through 12/31/2005 were used; this means that 1.095 ARE
results were calculated for each Monte Carlo simulation.

Harr method

The first step in the Harr method was to calculate the
correlation matrix, mean, and standard deviation of the
12 HSPF parameters evaluated. The USEPA developed
a database of HSPF model parameters (USEPA, 2006).
This database was called HSPFParm and contains HSPF
parameter values of several model applications in the
U.S. Twenty seven sets of parameter values were used
to compute the correlation matrix, mean, and standard
deviation of selected parameters. Table 3 depicts mean,

standard deviation, median, mode, and skew values of
selected HSPF parameters. In a symmetric distribution,
the mean, median, and mode are the same (Haan, 2002).
For each parameter in Table 3, it can be observed that these
three statistically measured values are close and the skew
values are around zero. This means that the assumption of
symmetry for input distributions in the Harr’s method is
most likely valid in this study. Other uncertainties could
arise in using the Harr’s method. For example, the short
sets of parameter values (only 27) and the lack of parameter
values found in the study site or near watersheds. Table 4
shows the correlation matrix of selected HSPF parameters.
Then, the eigenvector and eigenvalue matrices from the
correlation matrix were calculated using MATLAB.

Table 3: Statistical measure values of selected HSPF parameters

standard

Parameter mean . median mode skew*
deviation
LZSN, mm 146.7 48.0 1564 180.6 -0.6
INFILT, mm/hour 2.0 1.0 1.9 1.9 1.6
KVARY, 1/mm 24.3 254 24.8 0.0 0.5
AGWRC 0.97 0.02 0.98 0.99 -1.5
DEEPFR 0.04 0.1 0.002  0.00 3.9
BASETP 0.02 0.02 0.02 0.00 1.5
AGWETP 0.02 0.04 0.02 0.00 2.1
CEPSC, mm 0.3 0.7 0.00 0.00 2.1
UZSN, mm 14.8 73 10.9 10.8 0.8
INTFW 2.9 1.7 2.7 2.7 1.7
IRC 0.7 0.2 0.8 0.8 -2.1
LZETP 0.3 0.3 0.3 0.0 0.5

* dimensionless

The model runs required to solve the system were 2 by
the number of parameters. In this study, 12 parameters
were evaluated; thus 24 model HSPF runs were required
to solve the system. Using equations (2a) and (2b), the
coordinates of the 24 intersection points by each HSPF
parameter were calculated. Coordinate values out of range
were changed by the closest limit value. Finally, using
these 24 sets of parameters to determine the 95th and 5th
percentiles of model outputs, the 90% uncertainty bounds
(95th-5th percentiles) were calculated at daily levels from
01/01/2003 to 12/31/2005.

Performance evaluation

The overall effect of parameter uncertainty on streamflow
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Table 4: Correlation matrix of selected HSPF parameters

LZSN INFILT KVARY AGWRC DEEPFR BASETP AGWETP CEPSC UZSN INTFW IRC LZETP
LZSN 1.0 0.1 0.6 -0.2 -0.1 0.2 0.3 0.0 0.4 0.1 -0.3 0.4
INFILT 0.1 1.0 0.1 0.2 0.5 -0.1 0.1 0.6 0.1 0.0 -0.2 0.3
KVARY 0.6 0.1 1.0 -0.3 0.0 0.3 0.5 -0.3 0.6 0.3 -0.2 0.6
AGWRC -0.2 0.2 -0.3 1.0 0.1 -0.6 -0.2 0.1 0.0 -0.1 -0.1 -0.5
DEEPFR -0.1 0.5 0.0 0.1 1.0 -0.1 0.1 0.0 -0.1 -0.3 -0.2 0.0
BASETP 0.2 -0.1 0.3 -0.6 -0.1 1.0 0.7 0.2 0.0 -0.1 -0.2 0.2
AGWETP 0.3 0.1 0.5 -0.2 0.1 0.7 1.0 0.3 0.1 -0.1 -0.5 0.1
CEPSC 0.0 0.6 -0.3 0.1 0.0 0.2 0.3 1.0 0.0 -0.1 -0.5 0.0
UZSN 0.4 0.1 0.6 0.0 -0.1 0.0 0.1 0.0 1.0 0.4 -0.2 0.4
INTFW 0.1 0.0 0.3 -0.1 -0.3 -0.1 -0.1 -0.1 0.4 1.0 0.2 0.6
IRC -0.3 -0.2 -0.2 -0.1 -0.2 -0.2 -0.5 -0.5 -0.2 0.2 1.0 0.1
LZETP 0.4 0.3 0.6 -0.5 0.0 0.2 0.1 0.0 0.4 0.6 0.1 1.0

simulations was evaluated by computing the 5th and 95th
percentiles (i.e. 90% uncertainty bounds) of the Monte
Carlo and Harr results. Two criteria were used to evaluate
the HSPF 90% uncertainty bounds:

e Reliability: the number or percentage of daily
observed streamflows within the HSPF 90%
uncertainty bounds;

e  Sharpness: the width of the HSPF 90% uncertainty
bounds (minimum, median, and maximum values).

The HSPF 90% confidence intervals were evaluated using
daily observed flow data from 01/01/2003 to 12/31/2005
at the watershed outlet (USGS station 02443500).
Three percentile classes of observed flows developed
by the USGS (http://water.usgs.gov/waterwatch/) were
calculated to find the effect of model Reliability to above
normal (>75th percentile), normal (between 25th and 75th
percentiles), and below normal flows (<25th percentile).

In addition to the Reliability and Sharpness criteria,
continuous hydrographs of 90% uncertainty bounds and
observed data were plotted. Scatterplots were drawn of
Sth and 95th flow percentiles using the Monte Carlo and
Harr scenarios. In this study, Monte Carlo simulations
MCS were defined as benchmark. This method is widely
considered as effective strategy for the evaluation of
parametric uncertainty because the propagation of the
parameter variability is performed using thousands of
random numbers from the parameter distribution. On the
other hand, the Harr method uses only 2 by the number of
parameters to generate the uncertainty bounds. In Monte
Carlo simulations, the computation of the sample size

is a key factor (Haan, 2002). In this study, Monte Carlo
simulations were made with sample sizes up to 5.000 runs.
Then, the Absolute Relative Errors ARE (3) of simulated
daily flows and number of Monte Carlo simulations were
evaluated to find where the errors converge to a particular
value.

Evaluation of the Harr method was accomplished in the
same form as the MCS scenario (calculating the 95th
and 5th percentiles of model outputs, and Reliability and
Sharpness criteria). To compare the Monte Carlo results
versus the Harr results, the Relative Error of Reliability
RE and Sharpness RE

Reliability Sharpness
calculated as follows:

criteria values were

_ (Reliability ), — (Reliability),

RE P 0/ = onte Carlo 100 (4)
Re liability ( 0) (Re ﬁability)Momc i

(Sharpness ), — (Sharpness ),

RE
(Sharpness )Monte Carlo

%) — lonte Carlo 100 (5)

Sharpness (

Results and discussion

Stability results of the Monte Carlo method

Figure 2 shows the relationship between ARE of simulated
daily flows and number of MCS. Each line in Figure 2
represents one simulation day between 01/01/2003 and
12/31/2005. This figure reveals that the ARE values were
close between runs 2.000 and 5.000. In general, higher
MCS vyielded lower ARE results. It can be seen that the
slope of the ARE values is steep for MCS less than 1.000
runs and getting flat between 2.000 and 5.000 runs. The
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median ARFE values from 3.000 to 5.000 MCS were close
(5-10° to 7-10). It took approximately 12 hours of CPU
time to produce 5.000 simulations of the Luxapallila
watershed model (with 115 NEXRAD grid points, one
hour time step, and time simulation between 01/01/2002
and 12/31/2005) using a desktop computer with a 3.06GHz
Xeon(TM) CPU and 1.00 GB of RAM. Therefore, 5.000
MCS, a median ARE value of 7-10-, and 12 hours of CPU
time were considered sufficient for the purpose of this
research.

Absolute relative error of daily mean flows

1000 1500 2000 2500 3000 3500 4000 4500 5000
Monte Carlo runs

L
1] 500

Figure 2: Stability of results using Monte Carlo method with
Y-axis on a logarithmic scale

Uncertainty estimates

Results of parameter uncertainty propagation on HSPF
model outputs using the Monte Carlo and Harr methods
are shown in this section. Additionally, the Harr results
were compared to the Monte Carlo results.

The Harr method used 24 simulations (two times the
number of HSPF parameters) to solve the system, and
normal distributions were used for the selected HSPF
parameters. The baseline scenario using MCS used 5.000
interactions and triangular distributions to calculate the
90% uncertainty bounds.

Model Reliability results for the 2003-2005 period using
the Monte Carlo and Harr methods were 65.4% and 72.7%,
respectively. This means that the Harr method uncertainty
bounds included 11% more observed daily flows than the
90% uncertainty bounds yielded by the MCS. Relative
errors of model Reliability results by observed flow
percentiles from the Monte Carlo and Harr methods are
shown in Table 5. The lowest and highest relative errors

were -0.8% and 18.6%, respectively. Both uncertainty
methods calculated close results for below normal flows.
The Harr method consistently overestimated observed
flows within the 90% uncertainty bounds for normal and
above normal flows.

Table 5: Relative errors of model Reliability results by observed
flow percentiles due to the Monte Carlo and Harr methods
(2003-2005)

Observed flow percentiles N{,Z:S H;)rr Relati(\;oe error
<25th 923 91.6 -0.8
25th-75th 60.2 71.4 18.6
>75th 48.2 55.8 15.9

Figure 3 displays Sth and 95th flow percentiles by the
MCS and Harr methods. In general, high variability and
a markedly high overestimation were shown by the Harr
results.
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Figure 3: MCS and Harr methods (2003-2005), scatterplots of:
a) 5th flow percentile and b) 95th flow percentile
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Figure 4 shows comparisons of uncertainty bounds
generated by the MCS and Harr methods for selected
storms. The uncertainty bounds calculated by both methods
significantly differ from one another. All of the uncertainty
bounds for peak flows by the Harr method were wider
and higher than those yielded by the MCS. Table 6 shows
selected percentiles of the model Sharpness calculated
using the Monte Carlo and Harr methods. Clearly, the
Harr method results overestimated the width of the 90%
uncertainty bounds (model Sharpness) for each percentile.

700
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——Observed flow
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Sth percentile by MCS.

Flow (m”s)
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041505
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The minimum, median, and maximum relative errors of
Sharpness criteria values between the MCS and Harr
methods were -43.6%, 20.7%, and 563.6%, respectively.
The higher model Sharpness calculated using the Harr
method may be explained by the use of just 24 Harr runs
rather than the 5.000 Monte Carlo runs. Additionally, the
Harr method selected the parameter values using normal
distributions of the evaluated parameters rather than the
triangular distributions used by the Monte Carlo method.
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Figure 4: Daily observed hydrographs and uncertainty bounds estimated by the MCS and Harr methods




Diaz-Ramirez, J., Camacho, R., McAnally, W. and Martin, J. (2012). Obras y Proyectos 12, 42-56 |

Table 6: Selected percentiles of the range of the model Sharpness
using the Monte Carlo and Harr methods

Table 7: Number of parameter values calculated out of range by
the Harr method

Percentile MCS Harr
m3/s m’/s
Minimum 4.8 7.1
25th 10.8 13.4
50th 16.2 19.1
75th 27.0 349
Maximum 336.7 444 4

A drawback of the Harr method was the use of several
parameter limit values rather than the calculated values
to stay within the pre-established range of the HSPF
parameters. Detailed definition of the 12 HSPF hydrology
parameters used in this study is found in USEPA (2000).
It was found that 16% of the coordinate values calculated
by the Harr method were outside of the pre-defined
parameter ranges (Table 7). Harr coordinate values out
of range were changed by the closest limit value. HSPF
parameters related to storm events, INTFW and IRC,
yielded 20.8% and 16.7% respectively of values out of
range. All of the new INTFW values were relocated to the
lowest limit and, therefore, peak flows were expected to
increase. IRC and AGWRC parameters control the rate
at which interflow and groundwater, respectively, are
discharged from storage. The KVARY parameter is used to
describe non-linear groundwater recession rate. All of the
new IRC and AGWRC values were changed to the highest
limit and thus, slow flow rates in the recession limbs were
estimated. The new KVARY values were relocated to the
lowest limit and consequently, no seasonal variability of
the groundwater flow was expected. DEEPFR, BASETP,
AGWETP, CEPSC, and LZETP parameters control loss
of water from the system and were replaced to the lowest
value; therefore, streamflows were expected to increase.

In summary, the rearrangement of the Harr coordinates
yielded more streamflow in the system and, therefore,
the Harr model Sharpness was higher than the Monte
Carlo results (baseline scenario). Christian and Baecher
(2002) analyzed the problem of coordinate relocation in
the Harr method for bounded parameters. They pointed
out that “there seem to be no simple, elegant ways out
of this dilemma.” The use of other uncertainty methods
(e.g. Rosenblueth’s method or the Monte Carlo method)
or reducing the number of random variables was
recommended by the authors.

Relocation of the Number of
coordinates parameter | Percentage
Parameter
. values out of of total
Lowest | Highest
the range

LZSN 1 1 4.2
INFILT 0 0.0
KVARY 4 4 16.7
AGWRC 2 2 8.3
DEEPFR 9 9 37.5
BASETP 5 5 20.8
AGWETP 7 7 29.2
CEPSC 5 5 20.8
UZSN 1 1 4.2
INTFW 5 5 20.8
IRC 4 4 16.7
LZETP 3 1 4 16.7
Summary and conclusions

Variability of 12 HSPF hydrology parameters was
propagated through the USEPA HSPF model to compute the
90% uncertainty bounds of daily streamflow simulations
using the Harr probabilistic point estimate method and
Monte Carlo simulation. This study used physical data from
a watershed in Alabama and Mississippi, USA. The Harr
method is a very simple uncertainty method that only uses
the mean, standard deviation, and correlation of symmetric
variables. The Monte Carlo method is a straightforward
uncertainty method that is computationally inefficient
for large sets of data and requires the description of the
probability distribution function.

In this study, reasonable estimates of mean and standard
deviation of 12 HSPF parameters were obtained from a
database with 27 model applications in USA. It was shown
that the variables were roughly symmetric meaning that
a probabilistic definition can be achieved using the Harr
method. The Harr method calculated 11% more observed
flows within the 90% uncertainty bounds than the Monte
Carlo results. Computational efficiency was improved,
using 24 runs (two minutes) with Harr’s method to estimate
the HSPF 90% uncertainty bounds versus 5.000 runs (12
hours) using the Monte Carlo method. A drawback of the
Harr method was the use of several parameter limit values
instead of the calculated value to keep the pre-established
range of the HSPF parameters. In some parameters around
30% of values were changed and the rearrangement of the
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Harr coordinates yielded more streamflow in the system.
Therefore, the model Sharpness was wider with the Harr
results than with the Monte Carlo results (median relative
errors around 20% were calculated for model Sharpness).
Model Sharpness was wider with the Harr method because
it forced extreme values of each parameter to be sampled
with the same or higher frequency as the central values,
thus exploring a broader range of HSPF outputs than
those generated using the Monte Carlo method (triangular
distributions). The Harr method Sharpness bias was fairly
constant throughout the different flows (below normal,
normal, and above normal); however, the model Reliability
results were variable throughout the different flows, with
relative errors of -0.8%, 18.6%, and 15.9% for below
normal, normal, and above normal flows, respectively.

The comparison showed that Harr’s method could be
an appropriate initial indicator of parameter uncertainty
propagation on streamflow simulations, in particular on
hydrology models with several parameters and high spatial
discretization (multidimensional grid models). The Monte
Carlo simulations are recommended when knowledge
(probability distribution functions of variables) and
computational resources (in terms of computational power
to solve large sets of data) are feasible. More research is
needed to find appropriate estimates of statistical moments
(Harr method) and probability distribution function (Monte
Carlo method) of model parameters that could improve
uncertainty method results.
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